Amérique du nord - mai 2025 - sujet 1

Exercice 1 (Arbres binaires, récursivité et POO - 6 points)
Cet exercice porte sur 1’identification de végétaux (tilleul, ficus, etc.) a partir de caractéristiques de leurs folia (nom scientifique des
feuilles d’un végétal) : simples ou complexes, disposées de facon alternée ou non, etc.

Par exemple, un tilleul a des folia simples, disposées de fagon alternée mais pas en hélice, en forme de cceur et a bord denté. Un
ficus a également des folia simples et disposées de facon alternée. Cependant, elles sont insérées en hélice et sont de forme ovale. Un
robinier a des folia complexes, disposées de fagon alternée et non dentées.

Pour identifier un végétal a 1’aide des caractéristiques de ses folia, on utilise un arbre binaire appelé arbre de décision. Un exemple de

tel arbre de décision est partiellement représenté sur la figure 1 ci-dessous (les parties non représentées de cet arbre sont indiquées par
des points de suspension).

< Fieus >
LT —
oul

’ En forme d’ovale ? ‘

/ non -
oui G S
\\TI”GLI])
e T——
’ Insérées en hélice ? ‘ oul
/
oui non) non
oul ~
N
’ Disposées de fagon alternée ? ‘ ’ En forme de coeur ? ‘
/ non non
\ ee \ “es

oui

/QS()rbiu)
oui o

’ Feuilles simples ? ‘

non non I
oui ¢ Robimier. Novor ™
‘\\ obinier, Noyer D,
-

’ Disposées de facon alternée ? ‘

non
\ eee

FIGURE 1 — Extrait d’un arbre de décision aidant a reconnaitre un végétal a partir des caractéristiques de ses folia

Les rectangles sont les neeuds de I’arbre de décision. Ils correspondent chacun a une question. Les ovales sont les feuilles de 1’arbre
de décision. Ils correspondent chacun a un ensemble de végétaux. Pour chaque question, il est possible de répondre par oui ou par
non ce qui permet d’atteindre soit un nouveau nceud, c’est-a-dire une nouvelle question, soit une feuille de 1’arbre de décision. Cette
feuille contient le plus souvent un seul végétal, éventuellement plusieurs si leurs folia ont les mémes caractéristiques, et éventuellement
aucun si aucun végétal connu ne présente ces caractéristiques. Par exemple, robinier et noyer ont tous les deux des folia complexes (non
simples), disposées de facon alternée et non dentées : ils sont donc dans la méme feuille de 1’arbre de décision de la figure 1.

1. On observe un végétal dont les folia sont complexes (non simples), disposées de facon alternée et a bord denté. D’apres I’arbre de
décision de la figure 1, peut-on identifier ce végétal ? Si oui, quel est-il ?

2. On observe un végétal dont les folia sont simples, disposées de fagon alternée, insérées en hélice et ne sont pas de forme d’ovale.
D’apres I’arbre de décision de la figure 1, peut-on identifier ce végétal ? Si oui, quel est-il ?

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

L’arbre de décision est représenté en langage Python en utilisant une classe Noeud et une classe Feuille_resultat dont les
définitions sont données ci-dessous.

class Noeud:
def _ init_ (self, question, sioui, sinon):
self.question = question
self.siouil = sioui
self.sinon = sinon

class Feuille_resultat:
def _ init_ (self, vegetaux):
self.vegetaux = vegetaux

La classe Noeud a trois attributs :
e un attribut question, qui est une chaine de caracteres représentant une question;

e un attribut sioui, qui peut étre soit un objet de la classe Noeud représentant une autre question, soit un objet de la classe
Feuille_resultat;

e un attribut sinon, qui peut étre soit un objet de la classe Noeud représentant une autre question, soit un objet de la classe
Feuille_resultat.

Laclasse Feuille_resultat aun seul attribut, vegetaux, qui est une liste (éventuellement vide) de chaines de caracteres, dans
laquelle chaque chaine est le nom d’un végétal.

Par exemple, pour I’arbre de décision de la figure 1, pour le nceud dont la question est "En forme d'ovale 2", lattribut sioui
est un objet de la classe Feuille_resultat dont I'attribut vegetaux estlaliste ['Ficus'] alors que 'attribut sinon de ce
nceud est un objet de la classe Feuille_resultat dont I’attribut vegetaux est la liste vide.

3. Ecrire en langage Python le code permettant de construire 1’arbre de décision de la figure 2 ci-dessous et de 1’affecter a une
variable nommée arbre_2.

S hier
oui . /GEIEEQ
oui
Il

) non -
non oui - —
C Robinier, Noyer D
\\,,,, ”////
-
non
>

FIGURE 2 — Arbre de décision 2

On souhaite écrire une méthode est_resultat pour chacune des classes Noeud et Feuille_resultat. Un objet de la classe
Feuille_resultat est un résultat, la méthode doit renvoyer True. Un objet de la classe Noeud n’est pas un résultat, la méthode
doit renvoyer False.

4. Ecrire le code de la méthode est_resultat pour la classe Noeud.

5. Ecrire le code de la méthode est_resultat pourlaclasse Feuille_resultat.
On souhaite connaitre le nombre de végétaux identifiables par un arbre de décision.

6. Ecrire le code de la méthode nb_vegetaux pour la classe Feuille_ resultat.

7. Ecrire le code de la méthode nb_vegetaux pour la classe Noeud, qui prend en compte tous les végétaux identifiables a partir
de ce nceud.

On souhaite enfin écrire une méthode 1iste_questions pour chacune des classes Noeud et Feuille_resultat afin d’obtenir
la liste des questions présentes dans un arbre de décision. L’ordre des éléments dans cette liste n’a pas d’importance, de plus elle peut
contenir des doublons. On remarque que :

e si f estun objetde laclasse Feuille_resultat,alors £.1liste_questions () estlaliste vide;

e lerésultatde 'appel arbre_2.1liste_questions () estlaliste ['Simples ?', "Alternées ?', 'Bord denté?']
(ou une liste avec les mémes éléments mais dans un ordre différent).

2/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

8. Ecrire le code de la méthode 1iste_questions pourlaclasse Feuille_resultat.

9. Ecrire le code de la méthode 1iste_questions pour la classe Noeud, qui prend en compte toutes les questions accessibles a
partir de ce nceud. On rappelle que I’opérateur + en Python permet de concaténer des listes, par exemple la valeur de I’expression
[1,2]1+([3,4,5] estlaliste [1,2,3,4,5].

Pour représenter les caractéristiques des folia d’un végétal, on utilise un dictionnaire. Les clés du dictionnaire sont les questions de

I’arbre de décision et les valeurs sont True ou False selon la réponse.

Par exemple, le dictionnaire décrivant les folia du sorbier pour 1’arbre de décision de la figure 2 est le dictionnaire folia_sorbier
défini ci-dessous.

folia_sorbier = {"Simples ?": False,
"Alternées ?": True,
"Bord denté ?": True}

En revanche le dictionnaire folia_tilleul ci-dessous qui décrit (partiellement) les folia du tilleul n’est pas adapté pour 1’arbre de
décision de la figure 1 car des données sont manquantes. Par exemple, la question 'Feuilles simples ?' n’estpas une clé de ce
dictionnaire alors que c’est une question présente dans I’arbre.

folia_tilleul = {"En forme d'ovale ?": False,
"Disposées de facon alternée ?": True,
"Bord denté ?": True}

On cherche a éviter ce genre de cas, afin de ne pas d’utiliser un arbre de décision pour classifier un végétal a partir d’un dictionnaire qui
n’est pas assez renseigné.

10. Ecrire une fonction est_bien_renseigne qui prend en parametres :
¢ un dictionnaire dico_vegetal qui donne les caractéristiques des folia d’un végétal ;
e un arbre de décision représenté par un objet arbre de la classe Feuille_resultat ou de la classe Noeud
et qui renvoie True si toutes les questions présentes dans arbre sont des clés de dico_vegetal.
11. Ecrire une fonction identifier_ vegetaux qui prend en parametres :
¢ un dictionnaire dico_vegetal qui donne les caractéristiques des folia d’un végétal ;
¢ un arbre de décision représenté par un objet
e arbre de laclasse Feuille_resultat ou de laclasse Noeud

et qui renvoie la liste, éventuellement vide, des noms des végétaux dont les folia correspondent aux caractéristiques du diction-
naire. Par exemple ’appel identifier_vegetaux (arbre_2,folia_sorbier) devrarenvoyerlaliste ['Sorbier'].
On suppose que toutes les questions de I’arbre de décision arbre apparaissent comme des clés dans le dictionnaire dico_vegetal.

3/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

Exercice 2 (POO, récursivité et algorithmes gloutons - 6 points)

Une entreprise souhaite gérer les colis qu’elle expédie a I’aide d’une application informatique. On sait que chaque colis a un identifiant
unique, un poids, une adresse de livraison et un état. Pour chacun d’entre eux, trois états sont possibles : « préparé », « transit » ou
« livré ».

Pour cela, on a créé une classe Colis avec les attributs suivants :
e 1id : un identifiant unique (de type str);
e poids :le poids du colis en kilogrammes (de type float);
e adresse : I’adresse de destination (de type str);
e etat :I’état du colis (de type str parmi 'préparé’', 'transit', 'livré").

Lorsque I’on crée une instance de la classe Colis, 'attribut et at estinitialisé a 'préparé ' tandis que les valeurs des autres attributs
sont passées en parametres. Voici le début du code Python de la classe Colis :

class Colis:
def _ init_ (self, id, poids, adresse):
self.id = id
self.poids = poids
self.adresse = adresse
self.etat = 'préparé'

On crée, par exemple, les deux colis suivants :

colisA = Colis('AC1l2', 5.0, '20 rue de la paix 57000 Metz'")
colisB = Colis('AF34', 10.25, '32 rue du centre 57000 Metz')

1. Ecrire la méthode passer_transit delaclasse Colis qui permet de mettre 1’état du colis a la valeur 'transit'.

On dispose de la fonction ajouter_colis suivante :

def ajouter_colis(liste, colis):
ajoute le colis a la fin de la liste
liste.append(colis)

Par exemple, apres I’exécution des trois instructions suivantes, on a ajouté les deux colis crées précédemment alaliste 1iste_colis:

liste_colis = []
ajouter_colis(liste_colis, colisA)
ajouter_colis(liste_colis, colisB)

2. Dans cette question uniquement, on considere que 1’acheminement des colis de plus de 25 kg est refusé par le transporteur.
Recopier et modifier le code de la fonction ajouter_colis afin qu’elle ajoute le colis a la liste si son poids est inférieur ou
égal a 25 kg et qu’elle affiche le message 'Dépassement du poids maximal autorisé' sinon.

3. Ecrire une fonction nb_colis qui prend en parametre une liste d’objets de la classe Colis et qui renvoie le nombre de colis
présents dans cette liste.

4. Recopier et compléter les lignes 2 et 4 du code ci-apres de la fonction poids_total qui prend en parametre une liste d’objets
de la classe Colis et qui renvoie le poids total de I’ensemble des colis de cette liste.

1 |def poids_total(liste):
2 total =

3 for c in liste:

4 total =

5

return total

5. Ecrire une fonction 1iste_colis_etat qui prend en parametres une liste d’objets de la classe Colis et une chaine de ca-
racteres statut (parmi 'préparé', 'transit' ou 'livré') et qui renvoie une nouvelle liste contenant 1’ensemble des
colis de cette liste dont I’état est le méme que statut.

4/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

L’entreprise tente d’optimiser, a I’aide d’un algorithme glouton, le chargement des colis dans un camion ayant une capacité exprimée en
kilogrammes, sans tenir compte de la contrainte de volume. La procédure gloutonne adoptée est la suivante : on charge les colis dans le
camion en les choisissant par ordre décroissant de leur poids, sans dépasser la capacité du camion.

Pour cela, il est nécessaire de travailler sur une liste de colis triés par ordre de poids décroissants. La fonction tri_decroissant
permet de réaliser ce tri.

def tri_decroissant (liste):
n = len(liste)
for i in range(n - 1):
min_pos = 1
for j in range(i + 1, n):
if liste[]j].poids > liste[min_pos].poids:
min_pos = J
Echanger les é&léments
temp = listel[i]
liste[i] = liste[min_pos]
liste[min_pos] = temp
return liste

6. Donner le nom du tri utilisé dans la fonction tri_decroissant ainsi que son coiit dans le pire des cas.
7. Citer un autre algorithme de tri qui aurait pu &tre utilisé, ainsi que son cofit dans le pire des cas.
Le code Python ci-apres présente la fonction récursive chargement_glouton dont les parametres sont :
e liste :une liste de colis triées par poids décroissants ;
e rang : un indice compris entre O inclus et len (1iste) inclus;
e charge : une charge exprimée en kilogrammes

et qui renvoie la liste des colis a charger en appliquant 1’algorithme glouton, en supposant que la charge restante dans le camion est
capacité, et en ne considérant que les colis de 1iste d’indice supérieur ou égal & rang.

1 |def chargement_glouton(liste, rang, capacite):

2 if rang == len(liste):

3 return

4 elif liste[rang].poids <=

5 return ... + chargement_glouton(liste, ..., ...)
6 else:

7 return chargement_glouton(liste, ..., ...)

8. Recopier et compléter le code ci-dessus de la fonction chargement_glouton.

9. Expliquer brievement pourquoi, lors d’un appel a la fonction chargement_glouton, on peut obtenir I’erreur suivante :
RecursionError: maximum recursion depth exceeded while calling a Python object

10. Ecrire une fonction chargement_glouton? itérative (sans récursivité) qui prend en parameétres 11iste une liste de colis
triés par poids décroissants et capacite la capacité du camion exprimée en kilogrammes, et qui renvoie la liste des colis a
charger pour maximiser le poids total sans dépasser la capacité. On pourra créer une liste colis_a_charger, puis parcourir
les colis triés en les ajoutant a cette liste tant que le poids total n’excede pas la capacité du camion.

5/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

Exercice 3 (Graphes, bases de données, tris, algorithmes gloutons et récursivité - 8 points)
Une association s’occupe d’enfants de 0 a 18 ans. Elle souhaite pouvoir former des groupes d’enfants qui s’entendent durant les activités
proposées.

Partie A : base de données
Dans cette partie, on pourra utiliser les clauses du langage SQL pour :
* construire des requétes d’interrogation a I’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR), JOIN
ON;
* construire des requétes d’insertion et de mise a jour a I’aide de UPDATE, INSERT, DELETE;
* affiner les recherches a ’aide de DISTINCT, ORDER BY.
On considere une base de données composée des trois tables suivantes :
* Table parent :
e nom est le nom de famille du parent;;
e tel estle numéro de téléphone du parent;
e codep est le code postal de la ville ou réside le parent.
* Table enfant :
e 1id est I’identifiant de I’enfant pour 1’association;
e prenomn est le prénom de I’enfant;
e num_parent estle téléphone du parent référent (par soucis de simplicité, on suppose qu’un enfant n’est référencé que par
un seul parent);
e annee est ’année de naissance de I’enfant.
* Table mesentente :
e enfantl estl’identifiant d’un premier enfant;
e enfant2 estI'identifiant d’un second enfant.

Ainsi, on considere que deux enfants qui se trouvent sur la méme ligne dans la table mesentente ne peuvent pas effectuer de sortie
ensemble.

Le schéma relationnel de la BDD est donné en figure 1, avec la convention que les attributs formant une clef primaire sont soulignés
tandis que ceux d’une clef étrangere sont précédés d’un croisillon (symbole #) avec une fleche vers I’ attribut référencé.

parent enfant mesentente
nom (TEXT) id (INT) |&—/———— #enfantl (INT)
tel (INT) prenom (TEXT) 444444L4444* #fenfant?2 (INT)
codep (INT) 444444t————7 #num_parent (INT)
annee

FIGURE 1 — Schéma relationnel de la BDD

On considere la table enfant suivante :

enfant
id prenom num_parent | annee
2 'Hawa' 33619911212 | 2012
3 'Adrien' 33619861232 | 2013
6 'Kian' 33619834521 2012
8 'Gabin' 33619847852 | 2014

12 'Nakamura' 33619732453 2009

14 'Maya' 33600782153 2017

17 'Olivier' 33619868564 2017

21 'Tess' 33619835876 | 2016

23 | '"Rachelle' | 33600785482 2023

6/9

Bac NSI

Amérique du nord - mai 2025 - sujet 1

Session 2025

1. Donner le type pour I’attribut annee de la table enfant.

2. Expliquer quelle contrainte de domaine supplémentaire serait pertinente pour cet attribut annee.

3. Donner un exemple d’attribut de la table enfant qui suit une contrainte de référence.

4. En expliquant ce choix, proposer une clef primaire pour la table parent.

Suite a une mauvaise saisie, le véritable téléphone d’un parent (33619782812) a été transformé en 33600782812. On souhaite
corriger cette anomalie avec la requéte suivante, mais elle Ieve une erreur :

UPDATE parent SET tel

33619782812 WHERE tel

33600782812;

5. Expliquer pourquoi la requéte proposée leve une erreur.

6. Recopier et compléter alors cette suite de commandes qui permet de changer le numéro de téléphone d’un parent du parent de nom
'Bauges ' habitant au code postal 73340 et ayant pour téléphone erroné 33600782812 au lieu de son véritable téléphone

33619782812 :

INSERT INTO parent VALUES
UPDATE enfant SET num_parent =
DELETE FROM parent WHERE tel =

('Bauges',

33619782812, 73340);
WHERE num_parent = ...;

I

. En considérant la table enfant fournie, donner le résultat de cette requéte SQL.

SELECT prenom FROM enfant WHERE annee < 2014 ORDER BY annee;

8. Proposer une requéte qui renvoie les prénoms, par ordre alphabétique, des enfants inscrits pour le parent dont le numéro de

téléphone est 3619861122.

Partie B : graphes et algorithmique

. Proposer une requéte qui liste les identifiants et prénoms des enfants dont le parent habite dans la ville de code postal 38520.

Afin de faciliter en amont les préparations des sorties, on souhaite construire le graphe non orienté des mésententes entre les enfants de
I’association. Le graphe est représenté par un dictionnaire dont les clés sont les sommets du graphe, et qui associe a chaque sommet le

tableau (type list en Python) de ses voisins.

Raphael

FIGURE 2 — Graphe g1

Par exemple, le graphe g1 de la figure 2 est représenté par le dictionnaire suivant :

gl {'Elise':

'Pierre':
'Raphael’

'Virgile'

'Octavie':

'Sixtine':
: ['Elise',

["Octavie',
['Elise’',
['Octavie',

: ['Pierre',

(1,

'Virgile'],
'Pierre', 'Virgile'],
'Raphael'],
'Virgile'],

'Octavie', 'Raphael']

10. Expliquer pourquoi la situation décrite ne nécessite qu’un graphe non orienté.

7/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

11. Dessiner le graphe g2 défini ci-dessous.

g2 = {'Adrien': ['Elisabeth', 'Lea'l],
'Elisabeth': ['Adrien', 'Ian', 'Luca'l],
'Tan': ['Elisabeth', 'Joseph', 'Luca'l],
'Joseph': ['Ian'],
'Lea': ['Adrien'],
'Luca': ['Elisabeth', 'Ian']

12. Ecrire une fonction degre, qui prend en arguments un dictionnaire g représentant un graphe et une chaine de caracteres s
représentant un sommet du graphe, et qui renvoie le degré du sommet s dans g. On rappelle que le degré d’un sommet est le
nombre d’arétes issues de ce sommet.

13. Recopier et compléter les lignes 7 a 10 de la fonction sommets_tries, qui prend en parametre un dictionnaire g représentant
un graphe, et qui renvoie la liste des sommets du graphe triés dans I’ordre décroissant de leur degré.

def sommets_tries (g):
sommets = [sommet for sommet in g]
n = len (sommets)
for i in range(l, n):
sommet__courant = sommets[i]
3= 1-1
while ... and ...:
sommets[...] = sommets[...]
j=3-1

O 0 N N N R WD =

—_
(=]

11 return sommets

14. Préciser le tri utilisé dans la question précédente, ainsi que son colit d’exécution en temps dans le pire des cas selon le nombre
n de sommets (constant, logarithmique soit en log,(n), linéaire soit en n, quasi-linéaire soit en nlog,(n), quadratique soit en

n?, cubique soit en n?, exponentiel soit en 2", etc.). On fait I’hypothése pour cette question que la fonction degre est de cofit
constant.

Pour faire des groupes de personnes qui peuvent s’entendre, une méthode consiste a colorer le graphe, c’est-a-dire attribuer une couleur
a chacun de ses sommets, en prenant garde qu’aucune aréte ne relie deux sommets de méme couleur. Ainsi les sommets d’une méme
couleur forment un groupe de personnes qui peuvent s’entendre. Par la suite, les couleurs sont représentées par des nombres entiers
positifs, et —1 représente 1’absence de couleur.

Raphael

FIGURE 3 — Graphe g1 coloré

En notant les couleurs par différents nombres précisés sous les sommets, le graphe g1 ci-dessus est associé au dictionnaire des couleurs
dc1 suivant :

dcl = {'Elise': 0, 'Octavie': 1, 'Pierre': 2, 'Raphael': 3, 'Sixtine': 4, 'Virgile': 5}

On peut utiliser moins de couleurs dans cet exemple.

15. Recopier et colorer le graphe g1 en n’utilisant que trois couleurs (0, 1 et 2).

8/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

Une méthode simple pour colorer le graphe consiste a parcourir les sommets et numéroter (colorer) chaque sommet s par le plus petit
numéro non utilisé par ses voisins. On dispose pour cela de la fonction plus_petite_couleur_hors_voisins, qui prend en
parametres

¢ un dictionnaire g représentant un graphe;
e un dictionnaire de couleurs dc dont les clés sont des sommets de g ;

e une chaine de caracteéres s correspondant a un sommet de g, et qui renvoie le plus petit numéro non utilisé dans dc par les voisins
du sommet s.

On remarque que dans I’implémentation utilisée, les couleurs du graphe sont nécessairement numérotées entre 0 et n — 1 (n étant le
nombre de sommets).

def couleurs_voisins (g, dc, s):
return [dc[v] for v in g[s]]

def plus_petite_couleur_hors_voisins (g, dc, s):
couleur = 0
n = len(g)
cvoisins = couleurs_voisins (g, dc, s)
while couleur < n:
if couleur not in cvoisins:
return couleur
couleur = couleur + 1
return couleur # au cas ou len (dc)

0

16. Recopier et compléter la procédure qui permet de colorer le graphe en modifiant le dictionnaire dc pour qu’il associe finalement
a chaque sommet de g sa couleur.

1 |def colorer_graphe (g, dc):

2 # Pré-condition : les clés de dc sont les sommets
3 # de g, et les valeurs de dc sont toutes a -1

4 for s in dc:

5 couleur =

6 = couleur

On remarque que la procédure précédente colore les sommets du graphe dans 1’ordre donné par les clefs du dictionnaire dc. L’ algorithme
de Welsh-Powell consiste a colorer le graphe dans 1’ordre des sommets par degré décroissant.

17. Recopier et compléter le code de la fonction welsh_powell donné ci-apres. Cette fonction prend en parametre un dictionnaire
g correspondant a un graphe, et le colore selon I’algorithme de Welsh-Powell (c’est-a-dire qu’elle renvoie le dictionnaire des cou-
leurs associé). On pourra s’inspirer de la fonction colorer_graphe donnée ci-dessus et utiliser la fonction sommets_tries.

1 |def welsh_powell (qg):

2 # initialisation a -1 pour tous les sommets dans le dictionnaire dc
3 dc = ... # possiblement plusieurs lignes

4 # coloration en suivant 1'approche de Welsh-Powell

5 for

6

7

8

return dc

9/9

