
Amérique du nord - mai 2025 - sujet 1

Exercice 1 (Arbres binaires, récursivité et POO - 6 points)
Cet exercice porte sur l’identification de végétaux (tilleul, ficus, etc.) à partir de caractéristiques de leurs folia (nom scientifique des
feuilles d’un végétal) : simples ou complexes, disposées de façon alternée ou non, etc.

Par exemple, un tilleul a des folia simples, disposées de façon alternée mais pas en hélice, en forme de cœur et à bord denté. Un
ficus a également des folia simples et disposées de façon alternée. Cependant, elles sont insérées en hélice et sont de forme ovale. Un
robinier a des folia complexes, disposées de façon alternée et non dentées.

Pour identifier un végétal à l’aide des caractéristiques de ses folia, on utilise un arbre binaire appelé arbre de décision. Un exemple de
tel arbre de décision est partiellement représenté sur la figure 1 ci-dessous (les parties non représentées de cet arbre sont indiquées par
des points de suspension).

Feuilles simples?

Disposées de façon alternée ?

Disposées de façon alternée ?

Insérées en hélice?

...

Bord denté ?

...

En forme d’ovale?

En forme de cœur?

Sorbier

Robinier, Noyer

Fieus

-

Bord denté ?

...

Tilleul

-

oui

non

oui

non

oui

non

oui

non

oui

non

oui

non

oui

non

oui

non

FIGURE 1 – Extrait d’un arbre de décision aidant à reconnaı̂tre un végétal à partir des caractéristiques de ses folia

Les rectangles sont les nœuds de l’arbre de décision. Ils correspondent chacun à une question. Les ovales sont les feuilles de l’arbre
de décision. Ils correspondent chacun à un ensemble de végétaux. Pour chaque question, il est possible de répondre par oui ou par
non ce qui permet d’atteindre soit un nouveau nœud, c’est-à-dire une nouvelle question, soit une feuille de l’arbre de décision. Cette
feuille contient le plus souvent un seul végétal, éventuellement plusieurs si leurs folia ont les mêmes caractéristiques, et éventuellement
aucun si aucun végétal connu ne présente ces caractéristiques. Par exemple, robinier et noyer ont tous les deux des folia complexes (non
simples), disposées de façon alternée et non dentées : ils sont donc dans la même feuille de l’arbre de décision de la figure 1.

1. On observe un végétal dont les folia sont complexes (non simples), disposées de façon alternée et à bord denté. D’après l’arbre de
décision de la figure 1, peut-on identifier ce végétal ? Si oui, quel est-il ?

2. On observe un végétal dont les folia sont simples, disposées de façon alternée, insérées en hélice et ne sont pas de forme d’ovale.
D’après l’arbre de décision de la figure 1, peut-on identifier ce végétal ? Si oui, quel est-il ?

1

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

L’arbre de décision est représenté en langage Python en utilisant une classe Noeud et une classe Feuille_resultat dont les
définitions sont données ci-dessous.

class Noeud:
def __init__(self, question, sioui, sinon):

self.question = question
self.sioui = sioui
self.sinon = sinon

class Feuille_resultat:
def __init__(self, vegetaux):

self.vegetaux = vegetaux

La classe Noeud a trois attributs :

 un attribut question, qui est une chaı̂ne de caractères représentant une question ;

 un attribut sioui, qui peut être soit un objet de la classe Noeud représentant une autre question, soit un objet de la classe
Feuille_resultat ;

 un attribut sinon, qui peut être soit un objet de la classe Noeud représentant une autre question, soit un objet de la classe
Feuille_resultat.

La classe Feuille_resultat a un seul attribut, vegetaux, qui est une liste (éventuellement vide) de chaı̂nes de caractères, dans
laquelle chaque chaı̂ne est le nom d’un végétal.

Par exemple, pour l’arbre de décision de la figure 1, pour le nœud dont la question est "En forme d'ovale ?", l’attribut sioui
est un objet de la classe Feuille_resultat dont l’attribut vegetaux est la liste ['Ficus'] alors que l’attribut sinon de ce
nœud est un objet de la classe Feuille_resultat dont l’attribut vegetaux est la liste vide.

3. Ecrire en langage Python le code permettant de construire l’arbre de décision de la figure 2 ci-dessous et de l’affecter à une
variable nommée arbre_2.

Simples?

-

Alternées ?

Bord denté ?

-

Sorbier

Robinier, Noyer

oui

non oui

non

oui

non

FIGURE 2 – Arbre de décision 2

On souhaite écrire une méthode est_resultat pour chacune des classes Noeud et Feuille_resultat. Un objet de la classe
Feuille_resultat est un résultat, la méthode doit renvoyer True. Un objet de la classe Noeud n’est pas un résultat, la méthode
doit renvoyer False.

4. Ecrire le code de la méthode est_resultat pour la classe Noeud.

5. Ecrire le code de la méthode est_resultat pour la classe Feuille_resultat.

On souhaite connaı̂tre le nombre de végétaux identifiables par un arbre de décision.

6. Ecrire le code de la méthode nb_vegetaux pour la classe Feuille_resultat.

7. Ecrire le code de la méthode nb_vegetaux pour la classe Noeud, qui prend en compte tous les végétaux identifiables à partir
de ce nœud.

On souhaite enfin écrire une méthode liste_questions pour chacune des classes Noeud et Feuille_resultat afin d’obtenir
la liste des questions présentes dans un arbre de décision. L’ordre des éléments dans cette liste n’a pas d’importance, de plus elle peut
contenir des doublons. On remarque que :

 si f est un objet de la classe Feuille_resultat, alors f.liste_questions() est la liste vide ;

 le résultat de l’appel arbre_2.liste_questions() est la liste ['Simples ?','Alternées ?','Bord denté?']
(ou une liste avec les mêmes éléments mais dans un ordre différent).

2/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

8. Ecrire le code de la méthode liste_questions pour la classe Feuille_resultat.

9. Ecrire le code de la méthode liste_questions pour la classe Noeud, qui prend en compte toutes les questions accessibles à
partir de ce nœud. On rappelle que l’opérateur + en Python permet de concaténer des listes, par exemple la valeur de l’expression
[1,2]+[3,4,5] est la liste [1,2,3,4,5].

Pour représenter les caractéristiques des folia d’un végétal, on utilise un dictionnaire. Les clés du dictionnaire sont les questions de
l’arbre de décision et les valeurs sont True ou False selon la réponse.

Par exemple, le dictionnaire décrivant les folia du sorbier pour l’arbre de décision de la figure 2 est le dictionnaire folia_sorbier
défini ci-dessous.

folia_sorbier = {"Simples ?": False,
"Alternées ?": True,
"Bord denté ?": True}

En revanche le dictionnaire folia_tilleul ci-dessous qui décrit (partiellement) les folia du tilleul n’est pas adapté pour l’arbre de
décision de la figure 1 car des données sont manquantes. Par exemple, la question 'Feuilles simples ?' n’est pas une clé de ce
dictionnaire alors que c’est une question présente dans l’arbre.

folia_tilleul = {"En forme d'ovale ?": False,
"Disposées de façon alternée ?": True,
"Bord denté ?": True}

On cherche à éviter ce genre de cas, afin de ne pas d’utiliser un arbre de décision pour classifier un végétal à partir d’un dictionnaire qui
n’est pas assez renseigné.

10. Ecrire une fonction est_bien_renseigne qui prend en paramètres :

 un dictionnaire dico_vegetal qui donne les caractéristiques des folia d’un végétal ;

 un arbre de décision représenté par un objet arbre de la classe Feuille_resultat ou de la classe Noeud

et qui renvoie True si toutes les questions présentes dans arbre sont des clés de dico_vegetal.

11. Ecrire une fonction identifier_vegetaux qui prend en paramètres :

 un dictionnaire dico_vegetal qui donne les caractéristiques des folia d’un végétal ;

 un arbre de décision représenté par un objet

 arbre de la classe Feuille_resultat ou de la classe Noeud

et qui renvoie la liste, éventuellement vide, des noms des végétaux dont les folia correspondent aux caractéristiques du diction-
naire. Par exemple l’appel identifier_vegetaux(arbre_2,folia_sorbier) devra renvoyer la liste ['Sorbier'].
On suppose que toutes les questions de l’arbre de décision arbre apparaissent comme des clés dans le dictionnaire dico_vegetal.

3/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

Exercice 2 (POO, récursivité et algorithmes gloutons - 6 points)
Une entreprise souhaite gérer les colis qu’elle expédie à l’aide d’une application informatique. On sait que chaque colis a un identifiant
unique, un poids, une adresse de livraison et un état. Pour chacun d’entre eux, trois états sont possibles : ! préparé ", ! transit " ou
! livré ".

Pour cela, on a créé une classe Colis avec les attributs suivants :

 id : un identifiant unique (de type str) ;

 poids : le poids du colis en kilogrammes (de type float) ;

 adresse : l’adresse de destination (de type str) ;

 etat : l’état du colis (de type str parmi 'préparé', 'transit', 'livré').

Lorsque l’on crée une instance de la classe Colis, l’attribut etat est initialisé à 'préparé' tandis que les valeurs des autres attributs
sont passées en paramètres. Voici le début du code Python de la classe Colis :

class Colis:
def __init__(self, id, poids, adresse):

self.id = id
self.poids = poids
self.adresse = adresse
self.etat = 'préparé'

On crée, par exemple, les deux colis suivants :

colisA = Colis('AC12', 5.0, '20 rue de la paix 57000 Metz')
colisB = Colis('AF34', 10.25, '32 rue du centre 57000 Metz')

1. Ecrire la méthode passer_transit de la classe Colis qui permet de mettre l’état du colis à la valeur 'transit'.

On dispose de la fonction ajouter_colis suivante :

def ajouter_colis(liste, colis):
ajoute le colis à la fin de la liste
liste.append(colis)

Par exemple, après l’exécution des trois instructions suivantes, on a ajouté les deux colis crées précédemment à la liste liste_colis :

liste_colis = []
ajouter_colis(liste_colis, colisA)
ajouter_colis(liste_colis, colisB)

2. Dans cette question uniquement, on considère que l’acheminement des colis de plus de 25 kg est refusé par le transporteur.
Recopier et modifier le code de la fonction ajouter_colis afin qu’elle ajoute le colis à la liste si son poids est inférieur ou
égal à 25 kg et qu’elle affiche le message 'Dépassement du poids maximal autorisé' sinon.

3. Ecrire une fonction nb_colis qui prend en paramètre une liste d’objets de la classe Colis et qui renvoie le nombre de colis
présents dans cette liste.

4. Recopier et compléter les lignes 2 et 4 du code ci-après de la fonction poids_total qui prend en paramètre une liste d’objets
de la classe Colis et qui renvoie le poids total de l’ensemble des colis de cette liste.

1 def poids_total(liste):
2 total = ...
3 for c in liste:
4 total = ...
5 return total

5. Ecrire une fonction liste_colis_etat qui prend en paramètres une liste d’objets de la classe Colis et une chaı̂ne de ca-
ractères statut (parmi 'préparé', 'transit' ou 'livré') et qui renvoie une nouvelle liste contenant l’ensemble des
colis de cette liste dont l’état est le même que statut.

4/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

L’entreprise tente d’optimiser, à l’aide d’un algorithme glouton, le chargement des colis dans un camion ayant une capacité exprimée en
kilogrammes, sans tenir compte de la contrainte de volume. La procédure gloutonne adoptée est la suivante : on charge les colis dans le
camion en les choisissant par ordre décroissant de leur poids, sans dépasser la capacité du camion.

Pour cela, il est nécessaire de travailler sur une liste de colis triés par ordre de poids décroissants. La fonction tri_decroissant
permet de réaliser ce tri.

def tri_decroissant(liste):
n = len(liste)
for i in range(n - 1):

min_pos = i
for j in range(i + 1, n):

if liste[j].poids > liste[min_pos].poids:
min_pos = j

Échanger les éléments
temp = liste[i]
liste[i] = liste[min_pos]
liste[min_pos] = temp

return liste

6. Donner le nom du tri utilisé dans la fonction tri_decroissant ainsi que son coût dans le pire des cas.

7. Citer un autre algorithme de tri qui aurait pu être utilisé, ainsi que son coût dans le pire des cas.

Le code Python ci-après présente la fonction récursive chargement_glouton dont les paramètres sont :

 liste : une liste de colis triées par poids décroissants ;

 rang : un indice compris entre 0 inclus et len(liste) inclus ;

 charge : une charge exprimée en kilogrammes

et qui renvoie la liste des colis à charger en appliquant l’algorithme glouton, en supposant que la charge restante dans le camion est
capacité, et en ne considérant que les colis de liste d’indice supérieur ou égal à rang.

1 def chargement_glouton(liste, rang, capacite):
2 if rang == len(liste):
3 return ...
4 elif liste[rang].poids <= ...:
5 return ... + chargement_glouton(liste, ..., ...)
6 else:
7 return chargement_glouton(liste, ..., ...)

8. Recopier et compléter le code ci-dessus de la fonction chargement_glouton.

9. Expliquer brièvement pourquoi, lors d’un appel à la fonction chargement_glouton, on peut obtenir l’erreur suivante :
RecursionError: maximum recursion depth exceeded while calling a Python object

10. Ecrire une fonction chargement_glouton2 itérative (sans récursivité) qui prend en paramètres liste une liste de colis
triés par poids décroissants et capacite la capacité du camion exprimée en kilogrammes, et qui renvoie la liste des colis à
charger pour maximiser le poids total sans dépasser la capacité. On pourra créer une liste colis_a_charger, puis parcourir
les colis triés en les ajoutant à cette liste tant que le poids total n’excède pas la capacité du camion.

5/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

Exercice 3 (Graphes, bases de données, tris, algorithmes gloutons et récursivité - 8 points)
Une association s’occupe d’enfants de 0 à 18 ans. Elle souhaite pouvoir former des groupes d’enfants qui s’entendent durant les activités
proposées.

Partie A : base de données
Dans cette partie, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR), JOIN ...
ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT, DELETE ;
� affiner les recherches à l’aide de DISTINCT, ORDER BY.

On considère une base de données composée des trois tables suivantes :
� Table parent :

 nom est le nom de famille du parent ;

 tel est le numéro de téléphone du parent ;

 codep est le code postal de la ville où réside le parent.

� Table enfant :

 id est l’identifiant de l’enfant pour l’association ;

 prenom est le prénom de l’enfant ;

 num_parent est le téléphone du parent référent (par soucis de simplicité, on suppose qu’un enfant n’est référencé que par

un seul parent) ;

 annee est l’année de naissance de l’enfant.

� Table mesentente :

 enfant1 est l’identifiant d’un premier enfant ;

 enfant2 est l’identifiant d’un second enfant.

Ainsi, on considère que deux enfants qui se trouvent sur la même ligne dans la table mesentente ne peuvent pas effectuer de sortie
ensemble.

Le schéma relationnel de la BDD est donné en figure 1, avec la convention que les attributs formant une clef primaire sont soulignés
tandis que ceux d’une clef étrangère sont précédés d’un croisillon (symbole #) avec une flèche vers l’attribut référencé.

parent enfant mesentente

nom (TEXT) id (INT) #enfant1 (INT)

tel (INT) prenom (TEXT) #enfant2 (INT)

codep (INT) #num_parent (INT)

annee

FIGURE 1 – Schéma relationnel de la BDD

On considère la table enfant suivante :

enfant

id prenom num_parent annee

2 'Hawa' 33619911212 2012

3 'Adrien' 33619861232 2013

6 'Kian' 33619834521 2012

8 'Gabin' 33619847852 2014

12 'Nakamura' 33619732453 2009

14 'Maya' 33600782153 2017

17 'Olivier' 33619868564 2017

21 'Tess' 33619835876 2016

23 'Rachelle' 33600785482 2023

6/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

1. Donner le type pour l’attribut annee de la table enfant.

2. Expliquer quelle contrainte de domaine supplémentaire serait pertinente pour cet attribut annee.

3. Donner un exemple d’attribut de la table enfant qui suit une contrainte de référence.

4. En expliquant ce choix, proposer une clef primaire pour la table parent.

Suite à une mauvaise saisie, le véritable téléphone d’un parent (33619782812) a été transformé en 33600782812. On souhaite
corriger cette anomalie avec la requête suivante, mais elle lève une erreur :

UPDATE parent SET tel = 33619782812 WHERE tel = 33600782812;

5. Expliquer pourquoi la requête proposée lève une erreur.

6. Recopier et compléter alors cette suite de commandes qui permet de changer le numéro de téléphone d’un parent du parent de nom
'Bauges' habitant au code postal 73340 et ayant pour téléphone erroné 33600782812 au lieu de son véritable téléphone
33619782812 :

INSERT INTO parent VALUES ('Bauges', 33619782812, 73340);
UPDATE enfant SET num_parent = ... WHERE num_parent = ...;
DELETE FROM parent WHERE tel = ...;

7. En considérant la table enfant fournie, donner le résultat de cette requête SQL.

SELECT prenom FROM enfant WHERE annee < 2014 ORDER BY annee;

8. Proposer une requête qui renvoie les prénoms, par ordre alphabétique, des enfants inscrits pour le parent dont le numéro de
téléphone est 3619861122.

9. Proposer une requête qui liste les identifiants et prénoms des enfants dont le parent habite dans la ville de code postal 38520.

Partie B : graphes et algorithmique
Afin de faciliter en amont les préparations des sorties, on souhaite construire le graphe non orienté des mésententes entre les enfants de
l’association. Le graphe est représenté par un dictionnaire dont les clés sont les sommets du graphe, et qui associe à chaque sommet le
tableau (type list en Python) de ses voisins.

Elise

Octavie

Virgile

Pierre

Raphael

Sixtine

FIGURE 2 – Graphe g1

Par exemple, le graphe g1 de la figure 2 est représenté par le dictionnaire suivant :

g1 = {'Elise': ['Octavie', 'Virgile'],
'Octavie': ['Elise', 'Pierre', 'Virgile'],
'Pierre': ['Octavie', 'Raphael'],
'Raphael': ['Pierre', 'Virgile'],
'Sixtine': [],
'Virgile': ['Elise', 'Octavie', 'Raphael']
}

10. Expliquer pourquoi la situation décrite ne nécessite qu’un graphe non orienté.

7/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

11. Dessiner le graphe g2 défini ci-dessous.

g2 = {'Adrien': ['Elisabeth', 'Lea'],
'Elisabeth': ['Adrien', 'Ian', 'Luca'],
'Ian': ['Elisabeth', 'Joseph', 'Luca'],
'Joseph': ['Ian'],
'Lea': ['Adrien'],
'Luca': ['Elisabeth', 'Ian']

}

12. Ecrire une fonction degre, qui prend en arguments un dictionnaire g représentant un graphe et une chaı̂ne de caractères s
représentant un sommet du graphe, et qui renvoie le degré du sommet s dans g. On rappelle que le degré d’un sommet est le
nombre d’arêtes issues de ce sommet.

13. Recopier et compléter les lignes 7 à 10 de la fonction sommets_tries, qui prend en paramètre un dictionnaire g représentant
un graphe, et qui renvoie la liste des sommets du graphe triés dans l’ordre décroissant de leur degré.

1 def sommets_tries(g):
2 sommets = [sommet for sommet in g]
3 n = len(sommets)
4 for i in range(1, n):
5 sommet_courant = sommets[i]
6 j = i-1
7 while ... and ...:
8 sommets[...] = sommets[...]
9 j = j - 1

10 ...
11 return sommets

14. Préciser le tri utilisé dans la question précédente, ainsi que son coût d’exécution en temps dans le pire des cas selon le nombre
n de sommets (constant, logarithmique soit en log2pnq, linéaire soit en n, quasi-linéaire soit en n log2pnq, quadratique soit en
n2, cubique soit en n3, exponentiel soit en 2n, etc.). On fait l’hypothèse pour cette question que la fonction degre est de coût
constant.

Pour faire des groupes de personnes qui peuvent s’entendre, une méthode consiste à colorer le graphe, c’est-à-dire attribuer une couleur
à chacun de ses sommets, en prenant garde qu’aucune arête ne relie deux sommets de même couleur. Ainsi les sommets d’une même
couleur forment un groupe de personnes qui peuvent s’entendre. Par la suite, les couleurs sont représentées par des nombres entiers
positifs, et �1 représente l’absence de couleur.

Elise

Octavie

Virgile

Pierre

Raphael

Sixtine

FIGURE 3 – Graphe g1 coloré

En notant les couleurs par différents nombres précisés sous les sommets, le graphe g1 ci-dessus est associé au dictionnaire des couleurs
dc1 suivant :

dc1 = {'Elise': 0, 'Octavie': 1, 'Pierre': 2, 'Raphael': 3, 'Sixtine': 4, 'Virgile': 5}

On peut utiliser moins de couleurs dans cet exemple.
15. Recopier et colorer le graphe g1 en n’utilisant que trois couleurs (0, 1 et 2).

8/9

Bac NSI Amérique du nord - mai 2025 - sujet 1 Session 2025

Une méthode simple pour colorer le graphe consiste à parcourir les sommets et numéroter (colorer) chaque sommet s par le plus petit
numéro non utilisé par ses voisins. On dispose pour cela de la fonction plus_petite_couleur_hors_voisins, qui prend en
paramètres

 un dictionnaire g représentant un graphe ;

 un dictionnaire de couleurs dc dont les clés sont des sommets de g ;

 une chaı̂ne de caractères s correspondant à un sommet de g, et qui renvoie le plus petit numéro non utilisé dans dc par les voisins
du sommet s.

On remarque que dans l’implémentation utilisée, les couleurs du graphe sont nécessairement numérotées entre 0 et n � 1 (n étant le
nombre de sommets).

def couleurs_voisins(g, dc, s):
return [dc[v] for v in g[s]]

def plus_petite_couleur_hors_voisins(g, dc, s):
couleur = 0
n = len(g)
cvoisins = couleurs_voisins(g, dc, s)
while couleur < n:

if couleur not in cvoisins:
return couleur

couleur = couleur + 1
return couleur # au cas où len(dc) = 0

16. Recopier et compléter la procédure qui permet de colorer le graphe en modifiant le dictionnaire dc pour qu’il associe finalement
à chaque sommet de g sa couleur.

1 def colorer_graphe(g, dc):
2 # Pré-condition : les clés de dc sont les sommets
3 # de g, et les valeurs de dc sont toutes à -1
4 for s in dc:
5 couleur = ...
6 ... = couleur

On remarque que la procédure précédente colore les sommets du graphe dans l’ordre donné par les clefs du dictionnaire dc. L’algorithme
de Welsh-Powell consiste à colorer le graphe dans l’ordre des sommets par degré décroissant.

17. Recopier et compléter le code de la fonction welsh_powell donné ci-après. Cette fonction prend en paramètre un dictionnaire
g correspondant à un graphe, et le colore selon l’algorithme de Welsh-Powell (c’est-à-dire qu’elle renvoie le dictionnaire des cou-
leurs associé). On pourra s’inspirer de la fonction colorer_graphe donnée ci-dessus et utiliser la fonction sommets_tries.

1 def welsh_powell(g):
2 # initialisation à -1 pour tous les sommets dans le dictionnaire dc
3 dc = ... # possiblement plusieurs lignes
4 # coloration en suivant l'approche de Welsh-Powell
5 for ...
6 ...
7 ...
8 return dc

9/9

