Amérique du nord - mai 2025 - sujet 2

Exercice 1 (Tableaux, dictionnaires, arbres binaires, programmation générale et récursivité - 6 points)
Lors de la transmission de données, des erreurs peuvent se glisser. On se propose d’étudier des techniques permettant de minimiser les
conséquences de telles erreurs.

Partie A

Pour encoder un texte en binaire, on traduit chaque caractere en un octet, par exemple en utilisant le code ASCII. La table ASCII permet
de traduire les caracteres classiques en entiers compris entre 0 et 127, qui peuvent ensuite étre écrits en binaire sur un octet, c’est-a-dire
une suite de 8 bits valant chacun 0 ou 1.

Dans la table ASCII, le code associé au caractere a est 97.
1. Donner 1I’écriture binaire de a sur & bits.

Pour pouvoir corriger les erreurs durant les transmissions, on peut ajouter de la redondance dans les informations transmises, ¢’est-a-dire
ajouter des moyens permettant de retrouver le message initial méme si un ou plusieurs bits ont été modifiés. Une maniere de le faire
consiste a envoyer trois fois le méme message. Ainsi, méme si I’'une des copies se retrouve modifiée, on peut retrouver le message tant
que la majorité des copies a été transmise sans erreur.

La fonction replique suivante implémente cette stratégie. Elle prend en parametre une liste t ab composée de 0 et de 1.

def replique(tab):
n = len(tab)
return [tab[i // 3] for i in range(3 * n)]

2. Donner le résultat de I’appel replique ([0,0,1,0,17).

3. Recopier et compléter les lignes 14 et 16 du code de la fonction nb_occurrences, donné ci-apres, qui prend en parametres
une liste tab et un entier i et qui renvoie un dictionnaire qui associe, a chaque élément son nombre d’occurrences.

1 |def nb_occurrences (tab, 1i):

2 v

3 Renvoie un dictionnaire qui associe, a chaque élément
4 apparaissant dans tab entre la position 31

5 incluse et la position 3(i + 1) exclue,

6 son nombre d'occurrences.

7 >>> nb_occurrences((O0, 0, 1, 1, 0, 1, 0, 1, 1], 1)
8 {1: 2, 0: 1}

9 v

10 nb_occ = {}

11 for j in range(3 x i, 3 * (1 + 1)):

12 x = tab[j]

13 if x in nb_occ:

14

15 else:

16

17 return nb_occ

Bac NSI Amérique du nord - mai 2025 - sujet 2

Session 2025

4. Recopier et compléter a partir de la ligne 10 (Ie nombre de lignes et I’indentation sont suggérés mais ne sont pas obligatoires) du
code de la fonction majorite, donné ci-apres. Cette fonction prend en parametre un dictionnaire dict et renvoie une clé du

dictionnaire pour laquelle la valeur associée est la plus grande.

1 |def majorite(dict):

2 rr

3 Renvoie une clé du dictionnaire dict pour laquelle 1la
4 valeur associée est la plus grande.

5 Précondition : dict est un dictionnaire dont toutes
6 les valeurs sont positives.

7 rr

8 cle_max = None

9 valeur_max = -1

10 for cle in dict.keys():

11

12

13 e

14 return cle_max

Pour transmettre 4 bits d’information, il faut envoyer 12 bits par cette méthode.

Partie B

On s’intéresse a présent a une autre solution, reposant sur 1’ajout de bits de parité.

Pour transmettre 4 bits b3b2b1 b, on les place dans une matrice comme suit, et on complete les lignes et les colonnes par un bit de parité
(0 ou 1) pour que chaque ligne et chaque colonne possede un nombre pair de bits valant 1.

b3 b2

bit de parité ligne 1

by bo

bit de parité ligne 2

bit de parité colonne 1 | bit de parité colonne 2

bit de parité total

Lorsqu’il n’y a qu’une seule erreur, elle se situe a I’intersection de la ligne et de la colonne qui possedent un nombre impair de bits

valant 1.

5. On recoit le tableau suivant :

1711
11110
0]1]1

Sachant qu’une unique erreur de transmission s’est produite, recopier le tableau et entourer le bit qui a subi cette erreur (transfor-

mation d’un O en 1 ou d’un 1 en 0).

On représente une telle matrice en Python par la liste de ses lignes ou chaque ligne est elle-méme représentée par la liste de ses bits.

6. Ecrire le code d’une fonction erreur_colonne qui prend en parametre une matrice mat dans laquelle exactement une erreur
a eu lieu lors de la transmission et qui renvoie 1’indice de la colonne ayant une parité erronée.

Grace a cette méthode, on peut transmettre 4 bits d’information en utilisant 9 bits, tout en détectant et corrigeant une unique erreur.

2/13

Bac NSI

Amérique du nord - mai 2025 - sujet 2

Session 2025

Partie C

Richard Hamming a mis au point une méthode qui permet d’arriver au méme résultat avec seulement 7 bits transmis. Le tableau suivant
établit une correspondance entre chaque mot de 4 bits et une unique suite de 7 bits.

Code de Hamming (4,7)
Mot | Code associé || Mot | Code associé
0000 0000000 1000 1110000
0001 1101001 1001 0011001
0010 0101010 1010 1011010
0011 1000011 1011 0110011
0100 1001100 1100 0111100
0101 0100101 1101 1010101
0110 1100110 1110 0010110
0111 0001111 1111 1111111

On admet que ce tableau est construit de sorte que, étant donné une suite de 7 bits :

e soit elle est présente dans le tableau;

e soit, dans le cas contraire, il existe un unique code du tableau qui ne differe avec elle que d’un bit.

Un mot de 4 bits ayant été€ encodé selon cette correspondance est transmis.
7. Une unique erreur se glisse dans cette transmission, de sorte que le code recu est 1010000. Déterminer, en justifiant, le mot de 4

bits initial.

On souhaite écrire une fonction de correction des codes recus.
8. Recopier et compléter les lignes 17, 20 et 25 du code de la fonction corriger_erreur ci-apres, qui prend en parametre la
liste des entiers 0 ou 1 correspondant au code regu et qui renvoie cette liste si c’est un code associé, ou le code associé qui ne
differe que d’un bit de celle-ci sinon.

Exemples :

>>> corriger_erreur([1,1,0,1,0,0,1])

(1, 1, 0, 1,

[ll 1/ 1’ Ol

0, 0, 1]
>>> corriger_erreur([1,0,1,0,0,0,0])
0, 0, 0]
1 |# liste composée de tous les codes
2 | # associés de Hamming (4, 7).
3 |hamming_4_7 = [
4 (o,o0,0,0,0,0,01, f[(1,1,0,1,0,0,11,
5 (0,1,0,1,0,1,01, [1,0,0,0,0,1,11,
6 (,o0,0,1,1,0,01, 11(0,1,0,0,1,0,11,
7 (1,1,0,0,1,1,01, 1[0,0,0,1,1,1,11,
8 (t,1,1,0,0,0,01, [(0,0,1,1,0,0,11,
9 (1,o,1,1,0,1,01, I[0,1,1,0,0,1,17,
10 (o,1,1,1,1,0,01, [1,0,1,0,1,0,11,
11 (o,0,1,0,1,1,01, [1,1,1,1,1,1,111
12 |def corriger_erreur (code_recu) :
13 if code_recu in hamming_4_7:
14 return code_recu
15 else:
16 # Copie du code regu créée par compréhension
17 code =
18 for indice in range(7):
19 # Inversion du bit d'indice courant
20 code[indice] = (code[indice] + 1)
21 if code in hamming_4_7:
22 return code
23 else:
24 # Réinit. du bit d'indice courant
25 code[indice] =

3/13

Bac NSI Amérique du nord - mai 2025 - sujet 2 Session 2025

On se propose de construire un décodeur pour le code de Hamming (4,7) a I’aide d’un arbre binaire. Il s’agit d’un arbre binaire de
hauteur 7 dont chaque feuille est étiquetée par le mot de 4 bits susceptible d’avoir donné le code correspondant au chemin menant a
cette feuille.

Pour décoder un code recu, on descend dans I’arbre en lisant ce code de la gauche vers la droite. Si on rencontre un bit valant 0,
on continue dans le sous-arbre gauche. Si on rencontre un bit valant 1, on continue dans le sous-arbre droit.

0010

FIGURE 1 — Représentation partielle de I’arbre décodeur du code de Hamming (4,7)

Par exemple, le chemin indiqué en gras sur la Figure 1 indique comment on peut retrouver le mot 0010 apres avoir regu le code 0101010.
9. Indiquer combien I’arbre décodeur complet du code de Hamming (4,7) comporte de feuilles.

Un arbre binaire non vide est représenté en Python par une classe Noeud qui possede trois attributs :
e gauche correspond a son sous-arbre gauche s’il s’agit d’un nceud interne, et vaut None s’il s’agit d’une feuille;
e droit correspond a son sous-arbre droit s’il s’agit d’un nceud interne, et vaut None s’il s’agit d’une feuille;

e etiquette correspond a la chaine de caracteres désignant le mot décodé s’il s’agit d’une feuille, et vaut None s’il s’agit d’un
neeud interne.

10. Recopier et compléter les lignes 12 a 14 du code de la fonction récursive decode, donné ci-apres. Cette fonction prend en
parametres un arbre décodeur arbre, une liste code et un indice i et renvoie le mot étiquetant la feuille atteinte.

1 |def decode (arbre, code, 1):

2 P

3 Descend dans 1'arbre binaire arbre en lisant le
4 tableau code a partir de 1'indice 1 et renvoie
5 le mot étiquetant la feuille atteinte.

6 Précondition : arbre est un arbre binaire

7 de hauteur len(code) - 1

] P

9 if i == len(code):

10 return arbre.etiquette

11 if code[i] == O:

12 return decode(...)

13 if code[i] == 1:

14 return decode(...)

4/13

Bac NSI Amérique du nord - mai 2025 - sujet 2 Session 2025

Exercice 2 (Gestion de bugs, algorithmique, structures de données et POO - 6 points)
Partie A Un jour, Bob s’appréte a manger un collier de bonbons, et se pose la question suivante : « Si je mange un bonbon sur trois,
encore et encore jusqu’a ce qu’il n’en reste qu’un seul, quel sera le dernier bonbon restant ? »

FIGURE 1 — Collier de bonbons

Pour un collier ayant 5 bonbons, il décide de les numéroter de 0 a 4. Il commence par manger le bonbon d’indice 0, se décale de trois
bonbons et mange ensuite celui d’indice 3. En répétant la démarche, il mange ensuite le bonbon d’indice 2 et enfin celui d’indice 4.
Les indices des bonbons mangés sont donc, dans I’ordre, 0, 3, 2 et 4. Le bonbon restant est celui d’indice 1.

(©
g 0@ e O
B @_C (2)
FIGURE 2 — Les étapes pour un collier de 5 bonbons

1. Donner les indices dans 1’ordre dans lequel les bonbons sont mangés dans le cas ou le collier posséde initialement 8 bonbons et
I’indice du bonbon restant.

Afin de répondre a la question dans un cadre général, Bob décide de formaliser le probleme. Il considere un collier de n bonbons
numérotés de 0 a n — 1, ol n est un entier strictement positif.

Bob vient d’étudier en classe les valeurs booléennes. Il se dit qu’il peut représenter avec Python le collier par une liste collier
telle que, pour toute valeur entiere de i comprise entre 0 et n — 1, la valeur booléenne collier [i] vaut True sile bonbon d’in-
dice i du collier est encore présent, et vaut False sile bonbon d’indice i du collier a été mangé.

Des lors, il envisage 1’algorithme suivant :
* on initialise une liste col1lier représentant n bonbons qui n’ont pas encore été mangés ;
* on commence par manger le bonbon a I’indice 0;
* tant qu’il reste des bonbons a manger :

¢ on détermine I’indice du prochain bonbon a manger dans la liste collier;
¢ on mange le bonbon a cet indice;

* on renvoie I’indice du dernier bonbon mangé.

Afin de créer la liste collier décrite ci-dessus, Bob saisit dans la console I’instruction suivane :

collier = [true for i in range (8)]

11 obtient alors le message d’erreur suivant :

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined

2. Expliquer ce qu’est une erreur de type NameError et comment la corriger dans I’instruction proposée.

5/13

Bac NSI

Amérique du nord - mai 2025 - sujet 2

Session 2025

Bob écrit ensuite le code d’une fonction dernier qui prend en parametre le nombre de bonbons n et renvoie 1’indice du dernier bonbon
restant. On fournit ci-apres une partie du code de la fonction dernier.

1 |def dernier(n):

2 collier =

3 indice = 0

4 collier[indice] = False
5 for etape in range(n-1):
6 nb_bonbons_vus = 0

7 while nb_bonbons_vus
8 indice += 1

9 if ...:

10 indice = 0

11 if ...:

12 nb_bonbons_vus += 1
13 collier[indice] =

14 return indice

3. Recopier et compléter les lignes 2,7, 9, 11 et 13 du code de la fonction dernier.

Partie B

Bob se dit qu’une structure de file lui permettrait de résoudre astucieusement le probleéme des bonbons.

On considere la classe File dont on fournit ci-apres I’interface.

O 0 9 QN N R W N =

—_ = e =
A LW D = O

15

class File:

""rclasse deéfinissant

def _ init_ (self):

une structure de file"""

""rTnitialise une file wvide"""

def est_vide(self):

"""Renvoie le booléen indiquant
si la file est vide"""

def enfile(self, x):

""rplace x a la queue de la file

def defile(self):

mmn

""NRetire et renvoie 1'élément placé a la

téte de la file

Provoque une erreur si la file est vide

mmn

def affiche(self):

"nwAffiche la file"""

Le code Python ci-aprés montre un exemple d’utilisation de la classe File.

>>> f = File(
>>> f.enfile(
>>> f.enfile(
>>> f.affiche
(Téte) 0 1

)
)

(Queue)

)
0)
1
(

L’acronyme LIFO signifie « Last In First Out » a savoir « Dernier entré, premier sorti ».
L’acronyme FIFO signifie « First In First Out » a savoir « Premier entré, premier sorti ».

4. Donner I’acronyme le plus adapté a la structure de donnée File.

5. Déterminer 1I’affichage réalisé lors de I’exécution des instructions ci-apres.

6/13

Bac NSI

Amérique du nord - mai 2025 - sujet 2

Session 2025

>>>
>>>

>>>
>>>
>>>
>>>

f = File()

for x in [0, 1, 2, 3, 4]:
.. f.enfile (x)
f.defile ()
f.enfile(f.defile())
f.enfile(f.defile())
f.affiche ()

6. Ecrire le code de la fonction dernier_file qui prend en parametre le nombre de bonbons n et renvoie I’indice du dernier
bonbon restant.

Partie C
Bob souhaite utiliser la structure de données « liste doublement chainée ». Une telle liste est composée de maillons contenant chacun
trois informations :

* une valeur;
* un prédécesseur et un successeur qui sont tous deux des maillons.

Cette structure se préte bien au probleme des bonbons : dans un collier, un bonbon est précédé et suivi par d’autres bonbons. Le
successeur du dernier bonbon est le premier et le prédécesseur du premier, le dernier.

Al o 1 1 1 2 = 1l 3 - 1 4 |
|
}pred pred pred pred pred \‘
,, |
FIGURE 3 — Collier de cinq Bonbon
Bob crée la classe Bonbon ci-apres :
class Bonbon:
def _ init_ (self, valeur):
self.pred = None # prédécesseur de ce bonbon
self.valeur = valeur
self.succ = None # successeur de ce bonbon

7. Donner le terme correspondant aux variables pred, valeur et succ dans le vocabulaire de la programmation orientée objet.

Les instructions ci-dessous permettent de représenter un collier de trois bonbons de valeurs 0, 1 et 2.

>>>
>>>
>>>

zZero

Bonbon (0)
Bonbon (1)
Bonbon (2)

un
deux

>>>
>>>

zZzero.succ

un

un.pred

zero

>>>
>>>

deux
un

un.succ
deux.pred

>>>
>>>

deux.succ =
zero.pred

Zero
deux

>>>
>>>

zero.succ.valeur
un.succ.succ.pred.valeur

a:
b

8. Déterminer les valeurs des variables a et b aprés I’exécution de ces instructions.

La fonction creer_collier prend en parametre un entier n strictement positif représentant la taille d’un collier et renvoie un objet
de type Bonbon représentant le premier bonbon (de valeur 0) du collier. On prendra soin de faire se succéder et précéder les différents
bonbons ainsi que de « refermer » le collier en liant le dernier bonbon au premier.

713

Bac NSI Amérique

du nord - mai 2025 - sujet 2

Session 2025

9. Recopier et compléter les lignes 5, 6, 7, 9 et 10 du code de la fonction creer_collier, donné ci-apres.

1 |def creer_collier(n):

2 premier = Bonbon (0)

3 actuel = premier

4 for i in range(l, n):
5 nouveau = Bonbon(...)
6 actuel.succ =

7

8 actuel = nouveau
9

10

11 return premier

On considere le code Python suivant.

>>> bo
>>> bo
>>> bo

nbon = Bonbon (3)
nbon.pred = bonbon
nbon.succ = bonbon

N

A T’issue de I’exécution de ce code, on obtient la liste doublement chainée représentée ci-dessous.

FIGURE 4 —

10. On considere le code Python suivant.

Un collier d’un seul Bonbon

>>> premier
>>> premier.
>>> premier.
>>> bonbon =

= creer_collier(4)
pred.succ = premier.succ
succ.pred = premier.pred
premier.succ

Dessiner une représentation du « collier » dont le premier élément est 1I’objet bonbon obtenu a I’issue de 1’exécution du code

Python ci-dessus.

11. Dans le cas ou il ne reste qu’un bonbon, donner I’expression qui s’évalue a True, parmi les quatre propositions ci-dessous :

* Proposition A : valeur.succ == valeur.bonbon

* Proposition B : pred == succ

* Proposition C : bonbon.valeur == bonbon.succ.valeur
* Proposition D : bonbon.valeur == succ.valeur

12. Recopier et compléter les lignes 3, 4, 5 et 6 du code de la fonction dernier chaine, donné ci-apres, qui prend en parametre
le nombre de bonbons n et renvoie la valeur du dernier bonbon restant.

1 |def dernier_chai
2 bonbon = cre
3 while ... !=
4 bonbon.p
5 = bo
6 bonbon =
7

return bonbo

ne(n) :
er_collier (n)
red.succ =
nbon.pred
décalage de 3 bonbons
n.valeur

8/13

Bac NSI Amérique du nord - mai 2025 - sujet 2 Session 2025

Exercice 3 (Bases de données, programmation python, récursivité et graphes - 8 points)
Partie A
Dans cette partie, on pourra utiliser les clauses du langage SQL pour :

o construire des requétes d’interrogation a I’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR), JOIN. ..
ON;

e construire des requétes d’insertion et de mise a jour a I’aide de UPDATE, INSERT, DELETE;

e affiner les recherches a 1’aide de DISTINCT, ORDER BY.

La compagnie aérienne Airlnfo souhaite utiliser un systeme de gestion de bases de données relationnelles afin de 1’aider a gérer les in-
formations dont elle dispose sur les aéroports desservis, les vols proposés, les passagers et les réservations effectuées par ces passagers.

Elle crée donc la base de données compagnie_aerienne, constituée de quatre relations. Le schéma relationnel de cette base de
données est le suivant :

e aeroport (id_aeroport : TEXT, ville : TEXT, pays : TEXT)

e vol (id_vol : TEXT, aeroport_dep : TEXT, aeroport_arr : TEXT, distance : INT)

e passager (id_passager : INT, nom : TEXT, prenom : TEXT, ville : TEXT, d_totale : INT)
e reservation(id_vol : TEXT, id_passager : INT)

Une clé primaire de la relation vol est I’attribut 1d_vol. Les autres clés primaires et étrangeres ne sont pas précisées.
Les quatre tables ci-apres constituent, en I’état, la base de données compagnie_aerienne complete.

Les valeurs des champs distance et d_totale intervenant respectivement dans les tables vol et passager sont exprimées
en milliers de kilometres.

aeroport
id_aeroport ville rays

CDG Paris France

IAD Washington USA

QPP Berlin Allemagne

NRT Tokyo Japon

SYD Sydney Australie

YUL Montréal Canada

vol

id_vol aeroport_dep aeroport_arr | distance
ATIO0006 CDG IAD 6
AIO0O015 IAD CDG 6
ATIO0256 CDG SYD 17
ATI0258 SYD CDG 17
AIO0276 CDG NRT 10
ATI0292 NRT CDG 10
AT1280 NRT QPP 9
AT1681 QPP NRT 9
AT1785 NRT SYD 8
AT1845 SYD NRT 8

9/13

Bac NSI Amérique du nord - mai 2025 - sujet 2 Session 2025
passager
id_passager nom prenom ville d_totale
1 Dupont Alice Paris 6
2 Smith John Washington 6
3 Brown Sarah Berlin 9
4 Yamada Taro Tokyo 17
5 Williams Emma Sydney 10
reservation
id_vol id_passager
ATI0006 1
ATI0006 2
ATI0256 4
ATI0276 5
AT1681 3

1. Expliquer pourquoi I’attribut id_vol ne peut pas étre une clé primaire de la table reservation.
2. Proposer une clé primaire pour la table reservation.
3. Expliquer le role d’une clé étrangere dans une relation.

4. Ecrire le résultat renvoyé par la requéte SQL suivante :

SELECT id_vol FROM vol WHERE aeroport_arr = 'CDG';

5. Ecrire une requéte SQL qui donne les noms des villes qui sont destination d’un vol au départ de 1’aéroport CDG.

La compagnie Airinfo envisage de récompenser la fidélité de ses usagers en tenant compte de la distance totale qu’ils parcourent sur
leurs lignes. Ainsi, a chaque nouvelle réservation, la table passager doit étre mise a jour : si I’'usager avait déja parcouru une distance
totale dyoale, puis réserve un vol d’une distance d,, 1’attribut d_totale est modifié en prenant pour nouvelle valeur digie + dyol-

6. La passagere d’identifiant 5 a déja parcouru 10 milliers de kilometres. Elle réserve un vol de Washington (IAD) a Paris (CDG),
d’une distance de 6 milliers de kilometres. Ecrire la requéte permettant de mettre a jour la table passager.

La compagnie aérienne offre maintenant la possibilité de relier Paris CDG a Montréal YUL (Canada) par un vol de 6 milliers de
kilometres. Afin de prendre en compte ce nouveau trajet dans la base de données, on souhaite 1’ajouter dans la table vol dont la clé
primaire est id_vol. On propose, de maniere incorrecte, la requéte d’insertion ci-apres :

INSERT INTO vol VALUES

('"AIO256', 'CDG', 'YUL', 6);

7. Proposer, en justifiant, une correction relative a I’erreur commise.

Partie B
Dans cette partie, on considere les villes suivantes : Washington (W) ; Paris (P); Berlin (B); Tokyo (T); Sydney (S).

Les distances des vols entre ces villes, exprimées en milliers de kilometres, sont les suivantes :
e Washington - Paris : 6;
e Washington - Berlin : 7;
e Paris - Berlin: 1;
o Paris - Tokyo : 10;
e Paris - Sydney : 17;
o Berlin - Tokyo : 9;
e Tokyo - Sydney : 8.

La compagnie Airlnfo propose certains de ces vols. Son réseau aérien est représenté par le graphe pondéré non orienté de la Figure 1
dans lequel :

10/13

Bac NSI

Amérique du nord - mai 2025 - sujet 2 Session 2025

e chaque ville est représentée par un sommet;
e chaque vol direct entre deux villes est représenté par une aréte.

Le nombre indiqué sur chaque aréte est appelé poids : il représente la distance entre deux villes. Cette distance est la méme dans un sens

ou dans 1’ autre.

& e

FIGURE 1 — Graphe non orienté pondéré correspondant au réseau aérien de la compagnie Airlnfo

On choisit de représenter ce graphe en Python a I’aide d’un dictionnaire dans lequel chaque clé est un sommet du graphe et la valeur
associée a cette clé est elle-mé&me un dictionnaire, dont les clés sont les villes voisines et les valeurs sont les distances correspondantes.
Le dictionnaire associé au graphe, représenté par la Figure 1, est donné ci-apres.

graphe_airinfo = {'W': {'P’ 6},
'P': W' 6, 'T': 10, 's': 17},
'B': {'T': 9},
'T': {'B': 9, 'P': 10, 'S': 8},
's': {'P': 17, 'T': 8}
}
8. Déterminer la valeur de I’expression graphe_airinfo['T'] ['P'].

9. Ecrire le code d’une fonction Python vol direct permettant de déterminer s’il existe une liaison directe entre deux villes.
Cette fonction prend en parametres un dictionnaire graphe représentant le graphe, et deux clés du dictionnaire villel et
ville? représentant deux villes, et renvoie True si une telle liaison entre les villes villel et ville? existe, c’est-a-dire si
les deux sommets villel et ville2 sont reliés dans le graphe graphe par une aréte, False sinon.

Exemples :

>>> vol_direct (graphe_airinfo, 'T', 'B'")
True

>>> vol_direct (graphe_airinfo, 'W', 'B'")
False

Afin de limiter leurs empreintes carbone, les voyageurs demandent fréquemment aux compagnies aériennes de déterminer, a partir d’une
ville donnée, la liste des villes qu’il est possible d’atteindre par un vol direct tout en ne dépassant pas une certaine distance.

10. Ecrire le code d’une fonction Python 1iste_villes_proches qui permet de répondre a la demande des voyageurs. Cette
fonction prend en parametres un dictionnaire graphe représentant le graphe, une clé du dictionnaire ville et un entier d_max
représentant une distance et renvoie la liste des villes reliées a vi1lle par une aréte dans graphe dont le poids est au plus égal a

d_max.

Exemples :

>>> liste_villes_proches (graphe_airinfo, 'T', 7)
[]

>>> liste_villes_proches (graphe_airinfo, 'T', 9)

['B', 'S']

La compagnie aérienne Droidevant, concurrente de la compagnie Airlnfo, assure des liaisons différentes. Son réseau aérien peut
également étre représenté par un graphe dont le dictionnaire correspondant en Python est donné ci-apres.

graphe_droidevant = {'w': {'P': 6, 'B': 7},
"P': {'W': 6, 'B': 1},
'B': {'w': 7, 'P': 1},
ITI: 'Sl 8},
lSl; V'I‘l 8}
}

11/13

Bac NSI Amérique du nord - mai 2025 - sujet 2 Session 2025

11. Dessiner, en indiquant le poids sur chaque aréte, le graphe représentant le réseau aérien de la compagnie Droidevant.

On dit qu’un graphe est connexe s’il existe un chemin entre chaque paire de sommets, autrement dit, si pour tout sommet s1 et pour
tout sommet s2, il existe un chemin entre s1 et s2 dans le graphe.

12. Indiquer, parmi les deux propositions suivantes, celle qui est correcte :

e Proposition A : le graphe de la compagnie Airlnfo est connexe;
e Proposition B : le graphe de la compagnie Droidevant est connexe.

On peut adapter un algorithme de parcours de graphe pour déterminer si un graphe est connexe. Pour cela, on considere la fonction
parcours qui permet d’explorer les villes d’un graphe accessibles a partir d’une ville donnée et qui prend en parametres :

e graphe : un dictionnaire représentant le graphe;
e visitees : une liste des villes déja visitées;

e ville :laville actuelle a partir de laquelle on effectue I’exploration.

def parcours (graphe, visitees, ville):

"""Parcours d'un graphe a partir d'une ville non

visitée, en ayant déja visité un certain nombre de

villes.

mmn

Marque la ville comme visitée

visitees.append(ville)

Parcourt les voisines de la ville

for voisine in graphe([ville]:

if voisine not in visitees:

Explore depuils les voisines non visitées
parcours (graphe, visitees, voisine)

13. Expliquer en quoi la fonction parcours est une fonction récursive.

14. Déterminer le contenu des variables visiteesl et visitees?2 apres I’exécution des lignes de code données ci-apres.

visiteesl = []
parcours (graphe_airinfo, visiteesl, 'W'")
visitees2 = []

parcours (graphe_droidevant, visitees2, 'W'")

15. Indiquer, parmi les propositions suivantes, laquelle correspond au type de parcours effectué par la fonction parcours :
e Proposition A : un parcours en largeur;
e Proposition B : un parcours en grandeur;
e Proposition C : un parcours en profondeur.

On cherche a écrire une fonction est__connexe qui prend en parametre un graphe, représenté a 1’aide d’un dictionnaire de diction-
naires de voisins, et qui renvoie True si le graphe est connexe, False sinon.

On admet disposer d’une fonction ville_arbitraire quirenvoie un sommet arbitraire d’un graphe.
Par exemple ville_arbitraire (graphe_airinfo) pourrait renvoyer ' T' ou n’importe quel autre sommet.

12/13

Bac NSI Amérique du nord - mai 2025 - sujet 2

Session 2025

On considere le code de la fonction Python incomplet suivant :

1 |def est_connexe (graphe):

2 "mnygrifie si un graphe est connexe."""
3 depart = ville_arbitraire (graphe)

4 visitees =

5 parcours (graphe, visitees, depart)

6 return

16. Recopier et compléter les lignes 4 et 6 du code de la fonction est_connexe. On pourra, si nécessaire, ajouter de nouvelles

lignes.
On considere maintenant le code de la fonction, donné ci-apres, mystere, qui prend en parametres :
e graphe, un dictionnaire représentant un graphe ;
e ville, une clé du dictionnaire graphe représentant une ville de départ;
e chemin, une liste de clés représentant les villes;
e cout, un entier représentant une distance;

e arrivee, une clé du dictionnaire graphe représentant une ville d’arrivée.

def mystere (graphe, ville, chemin, cout, arrivee):

Ajoute la ville actuelle au chemin

chemin = chemin + [ville]

if ville == arrivee:
Affiche le chemin et son colt total
print (chemin, cout)

Parcourt les villes voisines et leurs poids

for voisine, poids in graphe[ville].items():
Vérifie que la ville n'est pas déja visitée
if voisine not in chemin:

mystere (graphe, voisine, chemin, cout + poids,

arrivee)

17. Déterminer les affichages produits lors de I’exécution de I’appel mystere (graphe_airinfo,

18. Expliquer, de maniere générale, ce que réalise I’appel mystere (graphe, ville, [],
graphe etdeux villes ville et arrivee.

0,

'w', (1, 0, 'B")

arrivee) pour un graphe

13/13

