Amérique du nord - mai 2025 - sujet 3

Exercice 1 (Programmation python et programmation dynamique - 6 points)
Dans cet exercice, on se réfere a la citation suivante de Donald Knuth :

« An algorithm must be seen to be believed. »

En typographie, il existe plusieurs manieres d’aligner un texte : aligner a gauche, centrer, aligner a droite et justifier.

lorem_ipsum.odt - LibreOFffice Writer
Formulaire Outils Grammalecte Fenétre Aide

A4 H-BEEB RE-0- c88DHE 88 =<
~|12pt v~ GZS-5 AA A A-%-

1l
1]
il
il
il
(L
4
(1]

I

e L i T

Justifié (Ctrl+J)

lorem ipsum dolor sit
amet, consectetur
adipiscing elit. sed do
ejusmod tempor
incididunt ut labore et
dolore magna aliqua.
Ut enim ad minim
veniam, quis nostrud
exercitation ullamco
laboris nisi ut aliquip
ex ea commodo
consequat.

FIGURE 1 - Justification d’un texte a 1’aide d’un traitement de texte

L’alignement justifié permet d’obtenir que chaque ligne ait la méme longueur appelée justification. Pour cela et pour chacune des lignes,
on ajoute si nécessaire des espaces supplémentaires. Dans tout cet exercice, on désigne par un espace exactement un caractere d’espa-
cement, tel que contenu dans la chaine Python ' '.

On répartit ces espaces supplémentaires ainsi :
* s’il n’y a qu’un mot on insere les espaces a droite de celui-ci;
* sinon :

¢ on effectue la division euclidienne du nombre total d’espaces nécessaires pour compléter la ligne par le nombre d’emplace-
ments inter-mots (entre les mots);

e on répartit le quotient d’espaces entre chaque emplacement inter-mot ;

e puis, s’il reste des espaces a distribuer, on les répartit une par une de gauche a droite.

Dans toute la suite, pour simplifier, on considere que tous les caracteres, espaces comprises, ont la méme largeur. Les mots ne sont ni
coupés, ni décorés (gras, italique, etc.).

Partie A

1. On considere les quatre premiers mots 'An', "algorithm', 'must', 'be' de la citation de Donald Knuth avec un ali-
gnement justifié de 25 caracteres, c’est-a-dire que la ligne contient 25 caracteres au total, en comptant les lettres et les espaces.
Montrer que, pour cette justification, le nombre d’espaces nécessaires est de 8.

2. On souhaite répartir ces huit espaces entre ces quatre mots. Déterminer la seule proposition, parmi les quatre propositions ci-
apres, respectant les regles de 1’alignement justifié définies précédemment, pour une justification de 25 caracteres. Le caractere -
représente ici une espace.

* An—-—-algorithm-—--must---be * An—-—-—-algorithm—-—--must--be

* An—-—--algorithm--must--be * An---—algorithm--must---be

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

On considere le code de la fonction ajout_espace, donnée ci-apres, qui prend en parametres une liste 1iste_mots non vide
de chaines de caracteres représentant un ensemble de mots et un entier justification représentant la justification. La fonc-
tion renvoie une chaine de caracteres constituée des mots de 1iste_mots a laquelle on ajoute des espaces pour la justifier selon
Jjustification.

La fonction sum en Python est utilisée pour calculer la somme des éléments contenus dans une liste.

On rappelle qu’en Python, le caractére \ placé en fin de ligne permet de continuer ’expression Python sur la ligne suivante, comme si
on n’avait en fait pas sauté de ligne. Cela sert uniquement a améliorer la présentation du code en évitant d’avoir des lignes trop longues.
Par exemple les deux lignes :

reponse = reponse + " " x ... \

+ liste_mots[i]

signifient exactement la méme chose que la ligne :

reponse = reponse + " " % ... + liste_mots[i]
1 |def ajout_espace(liste_mots: list[str],
2 justification: int) -> str:
3 nb_caracteres = sum([len (mot) for mot in liste_mots])
4 nb_mots = len(liste_mots)
5 assert nb_caracteres +
6 nb_espace_total = justification - nb_caracteres
7 if nb_mots == 1:
8 return ... + " " x nb_espace_total
9 else:
10 g = nb_espace_total // (nb_mots - 1)
11 r = nb_espace_total $ (nb_mots - 1)
12 reponse = liste_mots[0]
13 for i in range(l, r + 1):
14 reponse = reponse + " " x ... \
15 + liste_mots[i]
16 for i in range(r + 1, nb_mots):
17 reponse = reponse + " " x ... \
18 + liste_mots[i]
19 return reponse

3. Dans la fonction a jout_espace ci-dessus, il peut arriver que la liste de mots 1iste_mot s soit trop longue pour tenir sur une
seule ligne de justification donnée. Compléter la précondition de cette fonction a la ligne 5 avec un critere que doit vérifier la liste
liste_mots, pour étre justifiable sur une seule ligne.

Dans le cas d’une liste d’au moins deux mots, si on a nb_espace_total espaces a répartir entre nb_mots - 1 emplacements
inter-mots selon les regles de 1’alignement justifié, avec g et r respectivement le quotient et le reste de la division euclidienne de
nb_espace_total par nb_mots - 1,ilsuffitde:

* placer g+1 espaces pour les r premiers emplacements inter-mots ;

* placer g espaces pour les emplacements inter-mots suivants allant de r+1 a nb_mots - 1.
4. Recopier et compléter les lignes 8, 14 et 17 du code de la fonction a jout_espace.

Partie B
Dans cette partie on cherche a déterminer apreés quel mot revenir a la ligne. On admet que la justification est supérieure a la longueur
des mots considérés, ainsi chaque mot peut tenir sur une ligne.

5. Proposer un algorithme en langage naturel permettant de déterminer apres quel mot d’un texte revenir a la ligne, étant donné une
certaine justification. On attend uniquement une explication précise de 1’algorithme, pas sa programmation en Python.

On utilise une liste de tuples pour modéliser le découpage d’un texte en différentes lignes. Par exemple, pour la liste de mots
['"An', 'algorithm', 'must', 'be', 'seen', 'to', 'be', 'believed'],
la liste de découpage [(O, 2), (2, 5), (5, 7), (7, 8)] signifie que:
* la premiere ligne sera constituée des mots d’indice de 0 a 2 (2 exclu), soit An algorithm;
* la seconde ligne des mots de 2 a 5 (5 exclu), soit must be seen;
* la troisieme ligne des mots de 5 a 7 (7 exclu), soit to be;
* et la derniere ligne des mots de 7 a 8 (8 exclu), soit believed.

2/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

6. Recopier et compléter les lignes 5 a 8 du code de la fonction affiche_justifie, donné ci-apres, qui prend en parametres une
liste de mots, une liste de découpage et une justification puis affiche dans la console Python les lignes justifiées correspondantes.
Remarque : 1iste_mots[a:b] est une tranche (ou slice en anglais). Elle désigne la liste extraite de la liste 1iste_mots
constituée des éléments dont I’indice est compris entre a et b—1 inclus.

1 |def affiche_justifie(liste_mots: list[str],

2 decoupage: list([(int, int)],

3 justification: int) -> None:

4 # début de la boucle d'affichage justifié

5 for in decoupage:

6 ligne_Jjustifiee = \

7 ajout_espace (liste_mots[... : ... 1, ...)
8

Partie C

A I'usage, on se rend compte que la méthode précédente ne produit pas toujours un alignement justifié « esthétique ». Pour remédier a
ce probleme, les typographes utilisent une formule mathématique qui mesure la qualité esthétique d’une ligne en fonction du nombre
d’espaces supplémentaires ajoutées. Entre deux mots d’une méme ligne il y a forcément un espace. Sont donc considérées comme
espaces supplémentaires ceux que 1’on doit ajouter en plus.

Dans cette partie, on utilise une fonction qui mesure le défaut d’esthétique, appelé coit inesthétique, que 1’on cherche a minimiser.
* Le cofit inesthétique d’une ligne est le carré du nombre d’espaces supplémentaires nécessaires a la justification de cette ligne.
* Le coflit inesthétique d’un texte pour un découpage donné est la somme du codt inesthétique de chaque ligne.

L’ objectif de cette partie est, pour un texte donné, de proposer un découpage minimisant ce cofit.

7. Etant donné une justification de 15 caracteres, laliste de mots ['An', 'must', 'be', 'seen', 'to',

et la liste de découpage [(0, 2), (2, 4), (4, 7), (7, 8)]1,reproduire et compléter les trois dernieres lignes du ta-
bleau ci-apres (chaque ligne du tableau correspond a une ligne du texte découpé).

'algorithm', 'b

Cofit total du découpage : 147
. . Nombre d’espaces
Indice du mot | Indice du mot Nombre de Nombre de supplémentaires pour coiit
de début de fin +1 mots caracteres p.p p\
atteindre 15 caracteres
0 2 2 11 3 9
2 4
4 7
7 8

8. Ecrire le code d’une fonction cout qui prend en parametres deux indices i et j, une liste de chaines de caractéres 1iste_mots
et un entier justification représentant le nombre total de caracteres souhaités par ligne. Elle renvoie le cofit inesthétique
de la ligne commencant au mot 1iste_mots[1] etfinissantau mot 1iste_mots[j-1] sile nombre de caracteres (espaces
inter-mots comprises) de I’ensemble de ces mots est inférieur ou égal & justification et un million sinon.

Exemples :

>>> liste_mots = ['An', 'algorithm', 'must', 'be', 'seen', 'to', 'be', 'believed']
>>> cout (0, 2, liste_mots, 15)

9

>>> cout (0, 4, liste_mots, 15)

1000000

>>> cout (5, 8, liste_mots, 15)

1

9. Etant donnée une liste de n mots (avec n> 50), en remarquant qu’on peut revenir a la ligne ou non aprés chaque mot sauf le
dernier, indiquer s’il est raisonnable de déterminer une solution minimisant le cofit inesthétique en testant toutes ces possibilités.

3/11

Amérique du nord - mai 2025 - sujet 3

Session 2025

* Algorithmes pour I'alignement justifié du texte
Voici deux approches courantes :

1. Heuristique gloutonne :

Les heuristiques sont des algorithmes qui ne garantissent pas de trouver la solution
optimale, mais [...]

2. Programmation dynamique:

Dans le cas de |'alignement justifié, on peut décomposer le probléme en sous-
problémes correspondant a |'alignement des phrases successives.

L'algorithme fonctionne en construisant une table qui stocke les colts optimaux
d'alignement pour chaque sous-probléme. Pour chaque sous-probleme, on
considére toutes les fagons possibles de découper la phrase correspondante et on
calcule le colt d'alignement pour chaque découpage. Le colt optimal du sous-
probléme est ensuite défini comme le minimum des codts calculés pour tous les
découpages possibles

On pose la question a une IA générative, qui propose deux méthodes dont voici un extrait dans la capture d’écran donnée ci-apres.

La premiere méthode consiste en un algorithme glouton, la seconde utilise la programmation dynamique.

On demande alors a I'TA de générer un code en Python d’une fonction justifie_dynamique qui prend en parametres une liste de
chafnes de caractéres 1iste_mots et un entier justification représentant le nombre total de caractéres souhaités par ligne, en

utilisant la programmation dynamique. L’TA propose alors le code ci-apres.

justification:

def justifie_dynamique (liste_mots: list([str],

int)->1list[(int,

int)]:
"""Renvoie une liste contenant un découpage de
"liste_mots' justifiée selon 'justification'."""
n = len(liste_mots)
génération de deux listes de n éléments
cout_mini = [0] * n
indice_retour_ligne_mini = [0] % n
parcours a rebours de la liste des mots
for i in range(n-1, -1, -1):
initialisation du colt du découpage du ieme
au dernier mot
cout_mini[i] = cout (i, n, liste_mots,
justification)
indice_mini = n
recherche d'un indice j minimisant le colt
total menant a la justification de i a j
for j in range(i+l,n):
best = cout_mini[j]\
+ cout (i, J, liste_mots, justification)
if best < cout_minif[i]:

cout_mini[i] = best
indice_mini = j
indice_retour_ligne_mini[i] = indice_mini

reconstruction de la liste decoupage en partant

du premier mot indice k=0

decoupage = []

k=20

while k < n:
decoupage.append ((k,

indice_retour_ligne_mini[k]))

k = indice_retour_ligne_mini [k]

return decoupage

4/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

10. Donner I’ordre de grandeur du nombre d’appels a la fonction cout lorsqu’on exécute la fonction justifie_dynamique en
fonction de n le nombre de mots dans la liste.

11. Etablir a partir du code de la fonction justifie_dynamique larelation qui existe entre les éléments de la liste cout_mini.

12. Proposer une modification de la fonction justifie_ dynamique pour qu’elle renvoie, en plus du découpage, le cofit in-
esthétique de celui-ci.

5/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

Exercice 2 (Arbres binaires et représentation binaire - 6 points)
L’échange de données sur les réseaux devient de plus en plus important. Il s’avere que la compression est un élément essentiel dans cet
échange. On étudie ici un algorithme de compression, reposant sur le codage de Huffman.

(-j—-f-e-1-i-p-t-a-u,19)

0 1
Crte) D Cliptoan12)
0 1 0 1
oD CGter) C-1,6 Clot-au,6) >
0) 1 0 1 0 1
Cos2> Cend Caad Cand Cetan > Cudd
0 0 1
CEPICED Cen > a2

FIGURE 1 — arb_julie, un arbre de compression

Le codage de Huffman est adapté au texte a compresser car on se sert du nombre d’occurrences des caracteres dans le texte. Par exemple,
I’arbre de la Figure 1 a été construit pour compresser la phrase ' julie fuit la pluie". Le nombre associé a un ensemble de
caracteres correspond a la somme de leur nombre d’occurrences dans la phrase. Chaque chemin parcouru de haut en bas dans 1’arbre
définit le code associé au caractere présent en bas : ce code est constitué d’un 0 a chaque fois qu’on est allé a gauche et d’'un 1 a chaque
fois qu’fon est all¢ a droite, mis bout a bout.

La compression de "julie" donne donc : 7 — 0100 (gauche, droite, gauche, gauche), u — 111, 1 — 100, 1 — 101, e — 011,
soit 0100111100101011. La compression de " " (caractere espace) donne 00.

1. Donner un exemple de feuille et la racine de 1’arbre de la Figure 1.
On rappelle que la profondeur d’un nceud est égale a la distance en nombre d’arétes entre ce nceud et la racine.
2. Donner la profondeur du neeud correspondant au caractere p et son code binaire associé.
3. On remarque que sur la Figure 1, les nceuds associés aux caracteres les plus fréquents (avec un nombre d’occurrence plus élevé)
ont une profondeur plus petite. Expliquer I’intérét de cette propriété pour le codage binaire de la phrase.
On définit ci-dessous de facon incomplete la classe Noeud, ou Iattribut nom est une chaine de caractéres représentant un ensemble de
caracteres séparés par des tirets (-) et ou I’attribut nb__occu désigne la somme des nombres d’occurrences de ces caracteres :

1 |class Noeud:

2 def _ init_ (self, nom, nb_occu, fils_g, fils_d):
3 .nom = nom

4 .nb_occu = nb_occu

5 ..fils_g = fils_g

6 .fils_d = fils_d

7

8 def _ str_ (self):

9 o

10 Renvoie une chaine contenant les donnees

11 du noeud (nom et nombre d'occurrences)

12 e

13 return '(' +nom + ',' 4+ str(...) + ")’

6/11

Bac NSI

Amérique du nord - mai 2025 - sujet 3

Session 2025

4. Recopier et compléter les lignes 3, 4, 5, 6 et 13 de la classe Noeud ci-dessus.

On souhaite créer une fonction 1iste_occurrences qui a partir d’une chaine de caracteres chaine renvoie la liste des tuples
(c, nb_occu) ol c est un caractere apparaissant dans chaine et nb_occu est son nombre d’occurrences. Cette liste permettra
par la suite de construire I’arbre qui codera chaque caractére comme en Figure 1.

Exemple :

>>> liste_occurrences
(¢'y', 1), ('u', 3),
("', 3, £, 1)y, (!

('"julie fuit la pluie')
(1, 3), ('i', 3), ('e', 2),
t‘l l)l ('a‘l l)l ('p', 1)]

1 |def liste_occurrences (chaine) :
2 dico =

3 for ¢ in chaine:

4 if ¢ in

5 dico[c] = dicolc] +
6 else:

7

8 liste_res =

9 for cle in dico:

10 liste_res....

11 return

1

5. Recopier et compléter le code de la fonction 1iste_occurrences ci-dessus.

Pour élaborer 1’arbre du codage de Huffman, on doit regrouper les nceuds en prenant toujours les deux noeuds de plus faible nombre
d’occurrences. On va donc dans un premier temps faire un tri par insertion de la liste des tuples (c, nb_occu), par ordre croissant

de nombre d’occurrences.

On rappelle que la méthode insert de la classe list, utilisable avec la syntaxe : 1.insert (1,

sition 1 1’élément ele dans la liste 1.

Par exemple :

>>> 1 = [0, 2, 4]
>>> l.insert (1, 8)
>>> 1

[0, 8, 2, 4]

Le début de la fonction t ri_1liste est donné ci-dessous :

O 0 9 QN N R W=

—
(=]

def tri_liste(liste_a_trier):

liste_triee = []
for i in range (0, ...):
element = liste_a_trier[i]

while (j < len(liste_triee) and

element [1] >= liste_triee[J][1]):

liste_triee.insert (..., ...)
return liste_triee

6. Recopier et compléter le code de la fonction tri_1liste ci-dessus.

ele), permet d’insérer a la po-

7. Une fois la liste triée, il faut ensuite transformer la liste de tuples en liste de nceuds. Ecrire la fonction conversion_en_noeuds
qui convertit une liste de tuples en liste de nceuds.

Afin de simplifier 1’élaboration de 1’arbre du codage de Huffman, on doit créer une fonction qui insére un nouveau nceud dans une liste
de nceuds déja triée par ordre croissant sur le nombre d’occurrences (attribut nb_occu).

(O N OOV SR

def insere_noeud(noeud, liste_noeud):
j =0
while j < len(liste_noeud) and

liste_noeud.insert (..., ...)

/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

8. Recopier et compléter le code de la fonction insere_noeud qui modifie la liste 1iste_noeud passée en parametre.

On va a présent créer I’arbre du codage de Huffman a partir de la liste des nceuds triée par nombre d’occurrences croissant, avec la

méthode décrite ci-dessous. Répéter les trois opérations suivantes jusqu’a ce que la liste ne soit plus composée que d’un seul nceud (la
racine) :

* extraire de la liste les deux nceuds dont le nombre d’occurrences est le plus faible;

* créer un nceud pere permettant de regrouper ces deux nceuds ;

* insérer ce nceud pere dans la liste.

Par exemple, la Figure 1 a été obtenue en commencant par créer le nceud ' j—£ ', les nceuds j et £ ayant pour nombre d’occurences 1.

def construit_arbre(liste):

while ... > 1:
noeudl = liste.pop (0)
noeud2 = liste.pop (0)
nom_noeud_pere = noeudl.nom + "-" + noeud2.nom
nb_occu_noeud_pere =
noeud_pere = Noeud(...)
insere_noeud (..., liste)

return

O 0 N O R WD =

On rappelle que la méthode pop de la classe list, utilisable avec la syntaxe : 1.pop (1), permet de retirer et renvoyer 1’élément a la
position i dans la liste 1. Par exemple :

>>> 1 = [0, 8, 2, 4]
>>> 1.pop (1)

38
>>> 1
[0, 2, 4]

9. Recopier et compléter le code de la fonction construit_arbre, qui renvoie le nceud correspondant a la racine de I’arbre.

On considere que I’on dispose d’une fonction codage_arbre, qui a partir d’un arbre donné en paramétre renvoie une structure telle
que dans I’exemple suivant qui utilise arb_julie, I’arbre de la Figure 1.

Exemple :

>>> codage_arbre (arb_julie)

{*'". 00", '3': '0100', 'f': '0101', 'e': 'O11', '1': '100"',
'i{': '101', 'p': '1100', 't': '11010', 'a': '11011', 'u': '111"}

10. Indiquer la structure de données dont il s’agit.

11. Ecrire une fonction compresse qui, a partir du texte et de la structure renvoyée par codage_arbre, renvoie la suite binaire
sous forme d’une chaine de caracteéres représentant le texte compressé.
Par exemple on devrait obtenir :

>>> compresse('julie', {'': '0OO', '3': '0O100"'", '£': '0O101', 'e': 'O11', '1': '100",
'i': '101', 'p': '1100', 't': '11010', 'a': '11011', 'u': '111'})
'0100111100101011"

8/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

Exercice 3 (POO, graphes et bases de données - 8 points)

Partie A

Nous avons représenté un parc d’attractions par un graphe. Les sommets de ce graphe sont des attractions. Chaque attraction a une
durée (en minutes). Les arétes de ce graphe représentent la durée (en minutes) pour aller d’une attraction a une autre. Dans ce parc
d’attractions, toutes les attractions ont des noms uniques.

Petits chevaux 7 min Grand huit
(6 min) (11 min)
N & w
3 % =)
5 5
Grande roue 6 min Train fantome
(10 min) (9 min)

FIGURE 1 - Parc d’attractions

Les attractions sont représentées par des objets de la classe Att raction dont le code est donné ci-dessous.

class Attraction:
def _ init_ (self, nom, duree):

self.nom = nom
self.duree = duree
self.voisines = []

Le graphe précédent peut étre représenté, d’une facon incomplete, en langage Python ainsi :

1 |al = Attraction("Grand huit", 11)

2 |a2 = Attraction("Petits chevaux", 6)

3 |a3 = Attraction("Train fantome", 9)

4 a4 = Attraction ("Grande roue", 10)

5 |al.voisines = [(a2,7), (a3,5)]

6 |a2.voisines = [(al,7), (a3,3), (a4,4)]
7 |a3.voisines = [(al,5), (az2,3), (a4,06)]
8 .

ad.voisines =

Par mesure de sécurité, les gérants du parc d’attractions ont ralenti la vitesse de rotation de la grande roue. Sa durée est maintenant de
12 minutes.

1. En considérant la modélisation du parc d’attractions ci-dessus, écrire une ligne de code permettant de faire cette modification.
2. Donner et expliquer la valeur de I’expression a2 .voisines[2] [1].

3. Expliquer la ligne 7 de ce code.

4. Recopier et compléter la ligne 8 de ce code.

5. Expliquer pourquoi cette modélisation du parc d’attractions est réalisée avec un graphe non orienté.

Pour faciliter la gestion du parc d’attractions, ses dirigeants proposent aux usagers des balades dans le parc. Une balade est un chemin
du graphe représentant le parc d’attractions. Les usagers choisissant une balade doivent faire les attractions dans 1’ordre de parcours du
chemin. La durée d’une balade est la durée totale pour parcourir la balade, c’est-a-dire la somme des durées de ses sommets et de ses
arétes.

En langage Python, on modélise une balade par un tableau de sommets du graphe. Par exemple, le tableau [al, a2, a3, al,
a3] est une balade du graphe précédent.

6. Calculer la durée en minutes de la balade représentée par le tableau [al, a2, a3] etexpliquer le calcul effectué en une phrase.

9/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

7. Expliquer pourquoi le tableau [a2, al, a4, a3] n’estpasune balade du parc d’attractions.
On considere qu’il est possible de comparer des objets de la classe Att raction entre eux a I’aide de I’opérateur ==.

8. Ecrire une fonction sont_voisines qui prend comme arguments deux attractions de la classe Attraction et qui renvoie
True si ces deux attractions sont voisines et False sinon.

9. Ecrire une fonction est_balade qui prend comme argument un tableau de sommets de type Attraction et qui renvoie
True si ce tableau est une balade et False sinon.

Les gérants du parc d’attractions souhaitent automatiser la création de balades, de telle sorte que désormais chaque attraction apparaisse
au maximum une fois dans la balade. Pour cela, ils proposent de faire un parcours de graphe a partir d’une des attractions du parc,
avec un tableau pouvant représenter une balade en parametre. Pendant le parcours du graphe, si une attraction est atteignable depuis la
derniere attraction placée dans la balade, alors elle est ajoutée a la balade.

Le code suivant est proposé :

def parcours(attr, deja_vues, balade, nb):
if not attr.nom in deja_vues:
deja_vues[attr.nom] = True
if nb == 0 or sont_voisines(attr, balade[nb-1]):
balade[nb] = attr
nb = nb + 1
for voisine in attr.voisines:
nb = parcours(voisine[0], deja_vues, balade, nb)
return nb

10. Donner le type de parcours effectué par la fonction parcours ci-dessus.

Chaque attraction apparait au maximum une fois dans une balade. Ainsi, un tableau représentant la balade peut étre initialis€ a [None,
None, None, None] sile parc d’attractions n’a que quatre attractions. Si a 1’issue du parcours, les attractions n’ont pas été toutes
utilisées, il sera possible de créer une copie partielle du tableau contenant uniquement les éléments différents de None.

11. Déterminer ce que contient le tableau balade apres I’exécution du code ci-dessous, en utilisant les variables al, a2, a3 et a4 :

>>> pbalade = [None for _ in range(4)]
>>> parcours (a4, {}, balade, 0)

12. Déterminer maintenant ce que contient le tableau tableau apres I’exécution du code ci-dessous :

>>> a2.voisines = [(al,7), (a3,3)]
>>> ad.voisines = [(a3,6)]
>>> tableau = [None for _ in range(4)]

>>> parcours (a3, {}, tableau, 0)

13. Déduire des appels a la fonction parcours le nom de la structure de données utilisée pour la variable de ja_vues et expliquer
en une phrase son role.

Partie B
Dans cette partie de 1’exercice, on pourra utiliser les clauses du langage SQL pour :

* construire des requétes d’interrogation a I’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR), JOIN
ON;

* construire des requétes d’insertion et de mise a jour a I’aide de UPDATE, INSERT, DELETE;

* affiner les recherches a 1’aide de DISTINCT, ORDER BY.

Les visiteurs qui sont d’accord recoivent un bracelet magnétique a I’entrée du parc d’attractions. Ce bracelet permet de les identifier et
de les prendre en photos a différents points clés des attractions. Ces photos leur sont ensuite proposées a la vente. Le systeme est calibré
pour ne pas prendre de photos des personnes ne le souhaitant pas. Les données personnelles associées sont stockées en France et les
utilisateurs disposent, conformément a la loi, d’un droit de consultation, de retrait et de rectification.

Pour gérer ces photos et leur vente, le parc d’attractions utilise une base de données. La Figure 2 présente une représentation des
trois relations de cette base dont les clés primaires sont les attributs soulignés, appelés id dans chaque relation et dont les clés étrangeres
sont précédées d’un caractere #. Pour chaque attribut est indiqué le nom de I’attribut, et son type apres le symbole : le type int représente
des entiers, le type text des chaines de caracteres et le type float des nombres flottants.

10/11

Bac NSI Amérique du nord - mai 2025 - sujet 3 Session 2025

visiteur photo attraction
id : int id : int — id : int
nom : text *4441———7— #id_visiteur : int nom : text
prenom : text #id_attraction : int duree : int
date : text heure : text
prix : float

FIGURE 2 — Représentation des relations de la base de données utilisée

Lattribut date de la relation visiteur est une chalne de caracteres au format 'année-mois-Jjour', I’année étant écrite sur
4 chiffres, le mois sur 2 chiffres et le jour sur 2 chiffres. Par exemple, le ler février 2025 sera représenté par la chaine de caracteéres
'2025-02-01". Lattribut heure de la relation photo est une chaine de caractéres au format ' heures:minutes', en utilisant
2 chiffres pour les heures et 2 chiffres pour les minutes. Par exemple, ’heure 5 heures 49 minutes sera représentée par '05:49".

14. Expliquer ce qu’est une clé primaire, puis ce qu’est une clé étrangere.
15. Ecrire une requéte en langage SQL qui permet d’obtenir les noms et prénoms des visiteurs présents le 11 janvier 2025 sans
doublons.

En langage SQL, les opérateurs de comparaison classiques peuvent étre utilisés pour comparer des chaines de caracteres entre elles. Par
exemple, la condition '2025-01-01" > '2024-01-01" serait évaluée a vrai.

La fonction d’agrégation SUM permet de renvoyer la somme des valeurs d’un attribut. Par exemple, le code ci-dessous permet de
déterminer le prix total des photos de la relation photo :

SELECT SUM(prix) FROM photo;

Un visiteur, Alan TURING, est venu plusieurs fois dans le parc d’attractions en 2024. A chaque visite, il a acheté toutes les photos
proposées.

16. Ecrire une requéte en langage SQL qui permet d’obtenir la somme totale de ce qu’Alan TURING a payé pour des photos au parc
d’attractions en 2024.

Suite a un probleme technique, les gérants ont utilisé la requéte suivante :

SELECT visiteur.nom, prenom

FROM visiteur

JOIN photo ON visiteur.id = photo.id_visiteur

JOIN attraction ON attraction.id = photo.id_attraction

WHERE attraction.nom = 'Grande roue' AND heure = '12:34' AND date = '2024-07-26";

17. Expliquer ce qu’ils voulaient savoir.

Les gérants du parc d’attractions décident d’étoffer leur offre d’achat de photos en proposant pour un cliché plusieurs formats et supports
(AS, A6, poster, porte-clé, .. .).

18. Proposer des modifications de la base de données précédente pour qu’elle puisse prendre en charge cette nouvelle offre.

11/11

