Asie - juin 2025 - sujet 2

Exercice 1 (Algorithmique et POO - 6 points)
Pour travailler sur des dates, on a créé la classe Dat e dont le code est écrit ci-dessous :

1 |class Date:

2 def _ init_ (self, jour, mois, annee):
3 self.jour =

4 self.mois =

5 self.annee = .

6 self.nb_jours_par_mois = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
7

8

9

10 def get_jour (self):

11 return self. jour

12

13 def get_mois(self):

14 return self.mois

15

16 def get_annee (self):

17 return

18

19 def set_jour(self, Jjour):
20 self.jour = Jjour

21

22 def set_mois(self, mois):
23 self.mois =

24

25 def set_annee (self, annee):
26 self.annee = annee

27

28 def est_bissextile(self):
29

Partie A : acces et modification des données
Le constructeur de la classe Date prend en parametres trois entiers représentant le jour, le mois et I’année, puis les affecte respectivement
aux attributs jour, mois et annee.

. Recopier et compléter les lignes 3 & 5 du code précédent.
. Indiquer a quelle date correspond ’instance de la classe Date suivante : d = Date (1, 5, 2000)
. Ecrire le code permettant de créer une instance d de la classe Date qui représente la date du 19 juin 2024.

. La méthode get_annee renvoie la valeur de I’attribut annee. Recopier et compléter les lignes 16 et 17 du code précédent.

n A W N =

. La méthode set_mois modifie I'attribut mois en lui affectant la valeur passée en argument. Recopier et compléter les lignes
22 et 23 du code précédent.
L attribut nb_ jours_par_mois contient une liste qui correspond au nombre de jours pour chaque mois. Le mois de février contient
généralement 28 jours mais lors des années bissextiles il en contient 29.
6. La classe Date dispose d’'une méthode est_bissextile, qui utilise uniquement I’attribut annee, et qui renvoie True si
I’année de ’instance courante est bissextile et False sinon. On veut compléter la méthode __init__ pour ajuster le nombre
de jours par mois pour les années bissextiles. Recopier et compléter les lignes 7 et 8 suivantes :

self.nb_jours_par_mois = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if ... :
self.nb_jours_par_mois[...] = 29

Bac NSI Asie - juin 2025 - sujet 2 Session 2025

Partie B : sur I’année de I’instance courante
Pour déterminer le nombre de jours au cours d’une année, il faut savoir si elle est bissextile. On rappelle qu’une année est bissextile si
elle est divisible par 4 mais pas par 100 ou si elle est divisible par 400.

7. Ecrire le code de la méthode est_bissextile.
On rappelle qu’un entier a est divisible par 'entier n si a%n == 0.

On dote la classe Dat e de la méthode nb_ jours_passes qui renvoie le nombre de jours passés dans 1’année de I’instance courante.

def nb_jours_passes(self):

1

2 nb_jours = self.jour

3 mois = self.mois - 2

4 while mois >= 0:

5 nb_jours = nb_jours + self.nb_jours_par_mois[mois]
6 mois = mois - 1

7

return nb_jours

8. Indiquer quel sera I’affichage en console apres I’exécution des deux instructions suivantes :

>>> dl = Date (20, 3, 2001)
>>> dl.nb_jours_passes ()

On dote la classe Date de la méthode nb_jours_restants qui renvoie le nombre de jours restants dans 1’année de 1’instance
courante, soit 366 ou 365 moins le nombre de jours déja passés, selon que I’année est bissextile ou non.

9. Recopier et compléter le script de la méthode nb_ jours_restants ci-apres :

1 |def nb_jours_restants(self):
2 Jj = 365

3 if ...:

4 J = 366

5 return j -

Partie C : entre deux dates
On dote la classe Date de la méthode nb_ jours_depuis qui prend en parametre une autre instance other de la classe Date et
qui renvoie le nombre de jours écoulés entre la date de I’instance ot her et la date de I’instance courante.

1 |def nb_jours_depuis(self, other):

2 if other.get_annee() > self.get_annee():

3 return -1

4 if other.get_annee() == self.get_annee():

5 if other.nb_jours_passes () > self.nb_jours_passes|() :

6 return -1

7 if other.nb_jours_passes () == self.nb_jours_passes():
8 return 0O

9 nb_jours = self.nb_jours_passes() + other.nb_jours_restants()
10 for annee in range (other.get_annee()+1l, self.get_annee()):
11 d_suivant = date(l, 1, annee)

12 if d_suivant.est_bissextile():

13 nb_jours += 366

14 else:

15 nb_jours += 365

16 return nb_jours

On crée les instances de la classe Dat e suivantes :

>>> dl = Date(l5, 6, 2024)
>>> d2 = Date (15, 6, 2024)
>>> d3 = Date (15, 7, 2024)
>>> d4 = Date(l5, 6, 2025)
>>> d5 = Date (15, 6, 2022)

2/9

Bac NSI

Asie - juin 2025 - sujet 2 Session 2025

10. Indiquer quels seront alors les affichages en console apres 1’exécution de chacune des instructions suivantes (on précise que

I’année 2024 est bissextile)

>>>
>>>
>>>
>>>

dl
dl
dl
dl

.nb_jours_depuis (
.nb__jours_depuis (
.nb__jours_depuis (
.nb_jours_depuis (

Le timestamp est le nombre de secondes qui se sont écoulées depuis le ler janvier 1970 a 00h0O. 11 s’agit de la date de la mise en marche
du systeme d’exploitation UNIX. Par exemple, le 01/01/2024 a 00 :00 :00 correspond au timestamp de 1704063600.

11. Recopier et compléter le code de la méthode t imestamp qui renvoie le nombre de secondes qui se sont écoulées depuis le ler

janvier 1970.

1 |def timestamp (self) :

d =

3 return self.nb_jours_depuis(d) * 24 x 3600

3/9

Bac NSI Asie - juin 2025 - sujet 2 Session 2025

Exercice 2 (Programmation python et gestion de processus - 6 points)
On souhaite élaborer un programme systéme permettant de gérer I’ordre d’exécution des processus sur le processeur.

1. Donner le nom de ce type de programme.
2. Donner les différents états possibles d’un processus.

Chaque processus dispose d’une valeur de priorité. Un processus est prioritaire sur un autre processus si sa valeur de priorité est plus
petite. Ainsi pour rendre un processus moins prioritaire, il faut augmenter sa valeur de priorité, par exemple en la faisant passer de 2 a 3.

Fonctionnement du programme gérant I’ordre d’exécution des processus :
* On dispose d’une liste dont les éléments sont des files de processus. La premiere file contient les processus ayant la valeur de
priorité la plus élevée 0, la seconde ceux ayant la valeur de priorité 1, etc. A 1’arrivée d’un nouveau processus :
o Attribuer au nouveau processus la valeur de priorité la plus élevée 0;
e Placer le nouveau processus dans la file d’attente correspondant a sa valeur de priorité (c’est-a-dire la premiere file de la
liste).
* A chaque cycle d’horloge :
e S’il n’y a pas de processus en cours d’exécution et s’il reste des processus en attente :
— sélectionner un processus avec la priorité la plus élevée dans I’une des files d’attente non vides;
— ¢élire ce processus comme nouveau processus en cours d’exécution;;
¢ Sinon si un processus est en cours d’exécution :
— Si le processus a terminé son exécution, le retirer du processeur;
— Sinon,
+ incrémenter le temps d’utilisation du processus;
+ Si des processus de priorité supérieure ou égale attendent :
* retirer le processus en cours d’exécution du processeur ;
* réduire sa priorité de 1 et le mettre dans la file d’attente correspondant a sa priorité ;
* élire un processus dont la priorité est la plus élevée parmi les processus des files d’attente non vides;
+ sinon, réduire sa priorité de 1 et continuer a exécuter le processus en cours d’exécution.

3. Parmi les propositions suivantes, donner la structure la plus adaptée pour stocker les processus d’ une méme priorité :
* Proposition 1 : liste
* Proposition 2 : file
* Proposition 3 : pile
Pour représenter le processus, on utilise une classe Processus qui posséde les variables d’instances P ID (I’identifiant du processus),
priorite (lapriorité du processus), temps_utilisation surle CPU et le temps nécessaire a son exécution temps_CPU.

4. Compléter le constructeur de la classe Processus :

1 |class Processus:

2 . (self, ..., priorite, temps_CPU):
3 priorite = priorite

4 PID =

5 self.temps_utilisation = 0

6 self.temps_CPU = temps_CPU

5. On considere les trois processus suivants :

Pl = Processus (PID=1,priorite=0, temps_CPU=10)

P2 = Processus (PID=2,priorite=0, temps_CPU=7)

P3 = Processus (PID=3,priorite=0, temps_CPU=5)
Onadonc liste_files=[[P3, P2, P11, [1, I[1].

Compléter la simulation suivante, dans laquelle la variable CPU contient le processus en cours d’exécution :

Cycle 1: CPU=P1 liste_files=[[P3, P21, [], [1]
Cycle 2: CPU=P2 liste_files=[[P3], [P1],I[]]
Cycle 3: CPU=P3 liste_files=[[], [...],[]]
Cycle 4: CPU=P3 liste_files=[[], [...1, [...1]
Cycle 5: CPU=... liste_files=[[], [I

4/9

Bac NSI Asie - juin 2025 - sujet 2 Session 2025

Dans les questions 6 et 7, on dispose :
* d’un processus qui nécessite un temps d’utilisation de 1000 pour terminer;

* d’un nombre important de processus dont le temps d’utilisation pour terminer est de 4 ol I’on suppose de plus que chaque pro-
cessus terminé est remplacé par un nouveau processus similaire.

6. Expliquer pourquoi le processus qui nécessite un long temps d’utilisation du CPU risque de ne jamais terminer avec le programme
de gestion de 1’ordre des processus ci-dessus (indiquer notamment la priorité du processus long au bout de quelques temps).

Pour régler ce phénomene, on décide d’ajouter la variable d’instance temps_d_attente au processus, et on définit une constante
appelée Max_ Temps qui correspond au temps maximum qu’un processus attend avant de remonter sa priorité. L’idée est qu’a chaque
cycle, le temps_d_attente augmente. Ainsi, si sa valeur dépasse Max_Temps, alors sa priorité augmente.

7. Expliquer pourquoi le processus qui nécessite un temps long d’utilisation du CPU ne risque plus de ne jamais terminer avec ce
nouveau programme de gestion de I’ordre des processus.

8. Ecrire une fonctionmeilleur_priorite quirenvoie None s’il n’y a plus de processus et la priorité de I’un des processus les
plus prioritaires de la liste des files d’attente dans le cas contraire.

1 |def meilleur_priorite(liste_files):
2
Exemple :
pl, p2 et p3 sont des instances de la classe 'Processus'
>>> liste_files = [[], [p2], [p3, pll]

>>> meilleur_priorite(liste_files)
1

9. Ecrire une fonction prioritaire qui renvoie None si aucune des files d’attente de la liste ne contient un processus et qui
renvoie I’un des processus parmi les plus prioritaires sinon (dans ce cas la fonction prioritaire supprimera le processus
choisi de la file d’attente dans laquelle il se trouvait).

def prioritaire(liste_files):

On pourra utiliser 1iste.pop (1) pour renvoyer I’élément de la liste a I’indice i, tout en le supprimant de la liste.

10. Ecrire une fonction gerer qui récupere le processus en cours d’exécution p ainsi que la liste des files d’attente 1iste_files
et qui implémente le programme donné en début d’énoncé pour gérer les processus.

1 |def gerer(p, liste_files):

5/9

Bac NSI Asie - juin 2025 - sujet 2 Session 2025

Exercice 3 (Dictionnaires, récursivité, spécification, POO, bases de données et arbres binaires - 8 points)
Cet exercice est composé de trois parties indépendantes.

Partie A

Dans cette partie, on s’intéresse a la gestion de la base de données d’un hopital. On pourra utiliser les mots-clés SQL suivants : AND,
FROM, INSERT, INTO, JOIN, ON, SELECT, SET, UPDATE, VALUES, WHERE. On utilisera également la fonction d’agrégation COUNT
qui renvoie le nombre d’enregistrements correspondant a une requéte.

La table Pat ient possede les attributs suivants :
* nom_patient de type TEXT (clé primaire);
* prenom de type TEXT;
* numero_secu de type INT;

* age de type INT.

Patient
nom_patient | prenom numero_secu age
Heartman Alice | 207053523800187 | 17
Douglas Bob 100017500155572 24
Woods Caroll | 258125930610747 65
La table Sympt ome possede les attributs suivants :
* nom_patient de type TEXT (clé primaire et clé étrangere) ;
* toux de type TEXT;
* fievre de type TEXT;
* nausee de type TEXT;
* anosmie de type TEXT.
Symptome
nom_patient | toux | fievre | nausee | anosmie
Heartman Oui Non Non Oui
Douglas Non Oui Oui Non
Woods Oui Oui Non Non

La table Maladie possede, entre autres, I’attribut nom_maladie de type TEXT, qui est la clé primaire. Les autres attributs de cette
table ne sont pas représentés car ils ne sont pas utiles pour I’exercice.

Maladie

nom_maladie

Covid-19

Gastroentérite

La table Diagnostic possede les attributs suivants :
* nom_patient de type TEXT (clé primaire et clé étrangere);

* nom_maladie de type TEXT (clé étrangere).

Diagnostic

nom_patient nom_maladie

6/9

Bac NSI Asie - juin 2025 - sujet 2 Session 2025

1. Ecrire une requéte SQL permettant d’obtenir les noms et prénoms des patients ayant strictement plus de 60 ans.
2. Alice Heartman ne tousse plus. Ecrire une requéte SQL permettant de mettre a jour la base de données avec cette information.

3. On souhaite effectuer des statistiques sur les symptdmes des patients atteints de Covid-19. Ecrire une requéte SQL permettant de
connaitre le nombre de patients avec un diagnostic de Covid-19 qui toussent.

Un employé de 1’hopital saisit la requéte suivante :

INSERT INTO Patients VALUES ('Douglas', 'Patrick', 168077230253829, 55)

4. Expliquer pourquoi cette requéte produit une erreur.

5. Proposer une modification du schéma relationnel qui permettrait de résoudre ce probleme.

Partie B

On s’intéresse maintenant a 1’automatisation du diagnostic a partir des symptomes. Cette automatisation se fait a 1’aide d’un arbre de
décision binaire, tel que celui illustré sur la figure 1.

< O < O < O ol (@]
S & £ & £ & £ &

anosmie ‘ ’ anosmie ‘ ’ anosmie ‘ ’ anosmie ‘ ’ anosmie ‘ ’ anosmie ‘ ’ anosmie ‘ ’ anosmie

< Qo < Q < Q <] <] < Q < Q < Q

FIGURE 1 — Exemple d’arbre de décision binaire

Chaque nceud interne de I’ arbre est étiqueté par un symptome, et chaque feuille est étiquetée par un diagnostic. Pour établir un diagnostic,
on se place a la racine et on parcourt I’arbre de la maniere suivante :

* si on arrive a une feuille, le diagnostic est I’étiquette de cette feuille;

* sinon, on regarde si I’étiquette du nceud est un des symptomes du patient. Si oui, on continue le parcours dans le sous-arbre droit,
sinon, on continue le parcours dans le sous-arbre gauche.

L’arbre de la figure 1 donne un diagnostic pour la Covid-19. Par exemple, un patient qui ne tousse pas et n’a pas d’anosmie, mais a de
la fievre et des nausées est diagnostiqué négatif si on suit cet arbre de décision.

6. Donner le diagnostic pour un patient qui tousse et qui a de la fievre, mais n’a pas de nausée ni d’anosmie, d’apres I’arbre de la
figure 1.

7/9

Bac NSI Asie - juin 2025 - sujet 2 Session 2025

On décide d’implémenter les arbres binaires a 1’aide de la classe Noeud ci-dessous :

1 |class Noeud:

2 def _ _init__ (self, wvaleur, gauche = None, droit = None):

3 """yaleur correspond au symptome si le noeud est

4 interne ou au diagnostic si le noeud est une feuille"""
5 self.valeur = valeur

6 self.gauche = gauche

7 self.droit = droit

8

9 def est_feuille(self):

10 """renvoie vrali si le noeud est une feuille faux sinon"""
11 return self.gauche == None and self.droit == None

12

13 def symptome (self):

14 assert not self.est_feuille()

15 return self.valeur

16

17 def diagnostic(self):

18 assert self.est_feuille()

19 return self.valeur

7. Préciser la signification de 1’assertion de la méthode symptome.
8. Nommer un attribut et une méthode de la classe Noeud.
On représente les symptomes d’un patient en Python par un dictionnaire dont les clés sont les symptomes possibles, et les valeurs sont

True si le patient présente ce symptome et False sinon. Par exemple, les symptomes du patient de la question 7 sont représentés par
le dictionnaire suivant :

patient = {'toux' : True, 'fievre' : True, 'nausee' : False, 'anosmie' : False}

9. Compléter la fonction applique suivante, définie récursivement, qui renvoie le diagnostic établi en utilisant un arbre de décision
binaire implémenté a I’aide de la classe Noeud précédente.

def applique (arbre, patient):
if arbre.est_feuille():

else:
if patient[arbre.symptome()]:

else:

0 N AN LN B W N~

10. Donner la taille de I’arbre représenté en figure 1. On considere que la taille d’un arbre constitué d’une unique feuille est 1.

On souhaite réduire la taille de cet arbre en utilisant 1’observation suivante : un nceud dont les deux sous-arbres sont des feuilles
correspondant au méme diagnostic peut étre remplacé par une feuille correspondant a ce diagnostic, comme illustré en figure 2.

g/ \a
o
</ -
FIGURE 2 — Regle de réduction pour les arbres de décision binaire

11. Appliquer cette regle a ’arbre de la figure 1 pour le réduire et dessiner le nouvel arbre.

8/9

Bac NSI Asie - juin 2025 - sujet 2

Session 2025

12. Compléter la méthode reduire qui permet d’appliquer cette regle récursivement pour réduire la taille d’un arbre de décision

binaire.

1 |def reduire(self):
2 """fonction récursive qui réduit la taille d'un arbre de
3 décision sans changer les décisions prises"""
4 if self.est_feuille():
5 return
6 self.gauche.reduire ()
7 self.
8 if self.gauche.est_feuille() and ... and ==
9 self.valeur =
10 self.gauche =
11 self.droite =

Partie C

Dans cette partie, on s’intéresse a ’intégrité et a la sécurité des données.

Sur les 15 chiffres du numéro de sécurité sociale, 2 servent a détecter les erreurs : étant donné le nombre n formé des 13 premiers

chiffres, le nombre k formé les 2 derniers chiffres, appelé la clé, est choisi pour que n + & soit un multiple de 97.

Par exemple, 207053523800187 est bien formé car :

2070535238001 + 87 = 97 x 21345724104.

On rappelle que les opérateurs $ et // permettent en Python d’obtenir respectivement le reste et le quotient dans une division eucli-
dienne. Par exemple : 13%3 renvoie 1 et 13//3 renvoie 4 (car 13 = 3 x 4 + 1). On peut donc vérifier qu’un nombre entier n est un

multiple de p en testant si le reste de la division de n par p vaut zéro.

13. Recopier et compléter la fonction verifie suivante qui renvoie un booléen indiquant si un numéro de sécurité sociale représenté

par un entier (type int) est bien formé.

1 |def verifie (num_secu) :
2 n = num_secu // 100
3 k = num_secu % 100
4 return

14. Compléter la fonction cle qui permet de renvoyer la clé k d’un numéro de sécurité sociale en prenant pour parametre le nombre

n formé des 13 premiers chiffres du numéro de sécurité sociale.

def cle(n):

9/9

