
Métropole - juin 2025 - sujet 2

Exercice 1 (Arbres binaires et programmation Python - 6 points)
Le codage de Shannon-Fano est un système de codage utilisé pour la compression sans pertes de données. Il a été mis au point par
Robert Fano d’après une idée de Claude Shannon.

Partie A
Dans cette partie, on va étudier l’utilisation des arbres de codage.

Un arbre de codage est un arbre binaire où chaque feuille contient un symbole du texte que l’on souhaite coder. Le code binaire
d’un symbole s’obtient alors en concaténant les 0 et les 1 sur les branches qui mènent de la racine à la feuille contenant ce symbole.
Par exemple, pour l’arbre de codage donné en Figure 1, le symbole c est codé par le mot binaire 1101, tandis que d est codé par le
mot binaire 11000. Les codes binaires des symboles ne sont donc pas tous de la même taille. Pour décoder un mot binaire, il suffit
de descendre dans l’arbre, depuis la racine, selon les 0 et les 1 qu’on lit jusqu’à trouver une feuille (et donc un symbole), puis de
recommencer avec la suite du mot binaire pour décoder les symboles suivants.

e

s _

i u c , p n j

o d

1 0

1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0

FIGURE 1 – Exemple d’arbre de codage

1. Ecrire le mot binaire qui sera utilisé pour encoder le caractère espace, représenté par le symbole _ dans l’arbre.
2. Déterminer le texte codé par le mot binaire 0001110101111110011001.
3. Citer le type de parcours de l’arbre qui permettrait d’obtenir les symboles classés par taille d’encodage croissante.

Partie B
Dans cette partie, on va utiliser le codage de Shannon-Fano pour encoder le texte : je pense, donc je suis

Dans la méthode de Shannon-Fano, l’arbre de codage est calculé pour un texte donné par l’algorithme suivant :
� Etape 1 : classer les symboles du texte par nombre d’occurrences croissant ;
� Etape 2 : en gardant le classement obtenu, séparer les symboles en deux sous-groupes de sorte que les totaux des nombres

d’occurrences soient les plus proches possibles dans les deux sous-groupes ;
� Etape 3 : placer tous les symboles du premier groupe dans le fils gauche (côté étiqueté par 1), et ceux du second groupe dans le

fils droit (côté étiqueté par 0) ;
� Etape 4 : recommencer récursivement pour chacun des sous-groupes jusqu’à ce qu’ils n’aient plus qu’un seul symbole ; on a alors

une feuille étiquetée par ce symbole.

1



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

Après avoir classé les symboles par nombre d’occurrences croissant (étape 1), on obtient le tableau suivant :

symbole i u c o d , p n j s _ e

nombre d’occurrences 1 1 1 1 1 1 1 2 2 3 4 4

4. Justifier par le calcul que l’étape 2 mène à la situation illustrée par la Figure 2.

i u c o d , p n j s _ e

1 1 1 1 1 1 1 2 2 3 4 4

i u c o d , p n j

1 1 1 1 1 1 1 2 2

s _ e

3 4 4

1 0

FIGURE 2 – Le résultat de l’étape 2

En appliquant l’algorithme de Shannon-Fano, on peut obtenir l’arbre de la Figure 3.

i u c o d , p n j s _ e

1 1 1 1 1 1 1 2 2 3 4 4

i u c o d , p n j

1 1 1 1 1 1 1 2 2

s _ e

3 4 4

i u c o d

1 1 1 1 1

, p n j

1 1 2 2

s _

3 4
e

i u

1 1

c o d

1 1 1

, p

1 1

n j

2 2
s _

i u c
o d

1 1

, p n j

o d

1 0

1 0
1 0

1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0

FIGURE 3 – Arbre de codage obtenu par l’algorithme de Shannon-Fano

2/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

On rappelle qu’un arbre réduit à un seul nœud, c’est-à-dire réduit à une feuille, est de hauteur 0.

5. Donner la hauteur de l’arbre de la Figure 3 et préciser dans le contexte de l’exercice ce qu’elle représente. On rappelle que dans
le code ASCII, chaque symbole est codé sur un octet. 6. Justifier, en comparant le codage ASCII et le codage de Shannon-Fano,
que ce second codage permet d’utiliser environ deux fois moins d’octets pour le texte : je pense, donc je suis

6. Dessiner, en vous inspirant de l’arbre de la Figure 1, un arbre de codage qui permettrait d’encoder le mot ! chiffrer " en
utilisant l’algorithme de Shannon-Fano.

Partie C
Dans cette partie, on souhaite écrire une fonction Python qui donnera le mot binaire obtenu pour coder un texte avec l’algorithme de
Shannon-Fano. On commence par la fonction creer_dico_occ :

1 def creer_dico_occ(texte):
2 """renvoie un dictionnaire dont les clés sont les
3 symboles de texte et les valeurs associées leur
4 nombre d'occurences dans texte"""
5 dico = {}
6 for symbole in texte:
7 if symbole in dico:
8 dico[symbole] = ...
9 else:

10 dico[symbole] = ...
11 return dico

7. Recopier et compléter les lignes 8 et 10 du code de la fonction creer_dico_occ.

On dispose d’une fonction creer_tab_trie qui prend en paramètre un dictionnaire construit avec la fonction creer_dico_occ
et qui renvoie une liste de tuples classés dans l’ordre croissant d’occurrences des symboles. Par exemple :

>>> texte = 'je pense, donc je suis'
>>> dico = creer_dico_occ(texte)
>>> creer_tab_trie(dico)
[('i', 1), ('u', 1), ('c', 1), ('o', 1), ('d', 1), (',', 1), ('p', 1),
('n', 2), ('j', 2), ('s', 3), (' ', 4), ('e', 4)]

8. Ecrire une fonction somme_occ qui prend en paramètres un tableau tab de tuples (symbole, nb_occ) et qui renvoie la
somme des nombres d’occurrences des symboles du tableau. Les tuples utilisés sont de même structure que l’élément renvoyé
dans l’exemple précédent.

On suppose pour la suite qu’on dispose d’une fonction separe qui sépare un tableau trié en deux sous-tableaux de manière à ce que
les sommes de ces derniers soient les plus proches possible :

1 def separe(tab):
2 moitie = somme_occ(tab) // 2
3 somme = 0
4 i = 0
5 while moitie > somme:
6 somme = somme + tab[i][1]
7 i = i + 1
8 tab1 = [tab[k] for k in range(0, i)]
9 tab2 = [tab[k] for k in range(i, len(tab))]

10 return tab1, tab2

3/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

9. Recopier et compléter les lignes 9 et 11 du code de la fonction récursive shannon qui prend en paramètres un caractère symbole
et un tableau trié tab et qui renvoie l’écriture binaire associée à symbole dans le tableau tab.

1 def shannon(symbole, tab):
2 """renvoie l'écriture binaire associée à symbole
3 dans le tableau trié tab"""
4 if len(tab) == 1:
5 return ""
6 else:
7 t1, t2 = separe(tab)
8 if symbole in [elt[0] for elt in t1]:
9 return "1" + ...

10 else:
11 return "0" + ...

10. Décrire ce qui garantit la terminaison de la fonction récursive shannon.

11. Ecrire une fonction encode_shannon qui prend en paramètre un texte de type str et renvoie un mot binaire de type str obtenu
après encodage par l’algorithme de Shannon-Fano. On pourra utiliser les fonctions vues précédemment qui sont recensées ci-
après.

creer_dico_occ(texte)
renvoie un dictionnaire dont les clés sont les symboles
du texte et les valeurs associées leur nombre d’occurrences

creer_tab_trie(dico)
renvoie la liste crée à partir d’un dictionnaire de
couples (symbole, nb_occ)

separe(tab)
renvoie le tuple composé des 2 sous-tableaux triés avec
des sommes d’occurences proches

shannon(symbole, tab)
renvoie l’écriture binaire associée au symbole dans le
tableau trié tab

4/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

Exercice 2 (Bases de données, langage SQL et programmation python - 6 points)
Une ludothèque municipale a décidé de moderniser sa gestion en créant une base de données informatique. Cette base de données
permettra de suivre les jeux disponibles, les emprunts effectués par les adhérents, ainsi que les avis laissés sur les différents jeux. Pour
commencer, quatre tables principales ont été identifiées : jeu, adherent, emprunt et avis. Ces tables et leurs relations vont
permettre de stocker toutes les informations essentielles au bon fonctionnement de la ludothèque. On va considérer que la ludothèque
n’a qu’un exemplaire de chaque jeu (deux jeux de la ludothèque ne peuvent donc pas avoir le même nom).

jeu avis

nomJeu idAvis

editeur #nomJeu

anneeSortie #idAdherent

ageMinimum commentaire

categorie

emprunt adherent

idEmprunt idAdherent

#nomJeu nom

#idAdherent prenom

dateEmprunt dateNaissance

dateRendu adresse

FIGURE 1 – La base de données de la ludothèque

Dans la figure ci-dessus, les clés primaires de chacune des tables sont soulignées et les clés étrangères sont précédées du symbole #.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR) et JOIN
... ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT et DELETE ;

� affiner les recherches à l’aide de DISTINCT et ORDER BY ;

� réaliser des agrégations à l’aide de COUNT.

Par exemple, l’instruction SQL :

SELECT COUNT(nomJeu) FROM jeu;

donne le nombre de jeux présents dans la table jeu.

1. Expliquer pourquoi on ne peut pas prendre l’attribut nom comme clé primaire pour la relation adherent.

2. Décrire ce que donne la requête SQL suivante :

SELECT nomJeu, editeur FROM jeu ORDER BY nomJeu;

Lorsque qu’un jeu est emprunté et n’a pas encore été rendu, la valeur de l’attribut dateRendu de la table emprunt est à NULL.

3. Ecrire une requête permettant de connaı̂tre le nom de tous les jeux qui sont en cours d’emprunt.

4. Ecrire une requête SQL pour afficher le nom et le prénom de tous les adhérents qui ont emprunté le jeu Catan.

5. Claire VOYANT, adhérente de longue date à cette ludothèque, a emprunté le jeu Catan et l’a rendu le 3 juin 2025. Lors de l’em-
prunt, la valeur de idEmprunt était 1538. Ecrire une requête SQL qui a permis de mettre à jour la base de données afin qu’elle
prenne en compte que ce jeu a été rendu. Toutes les dates de la base de données sont écrites sous le format 'AAAA-MM-JJ'.

6. Ecrire une requête SQL qui permet de trouver le nom et la catégorie de tous les jeux de la ludothèque sortis à partir de 2010 et
dont l’âge minimum est strictement inférieur à 10 ans.

5/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

La ludothèque décide d’organiser des événements. Pour cela, elle ajoute une relation evenement à sa base de données. En outre, pour
chaque événement, elle souhaite garder en mémoire une trace des adhérents qui y ont participé. À cette fin, elle complète sa base avec
une relation participation.

jeu avis evenement

nomJeu idAvis nom

editeur #nomJeu dateEvenement

anneeSortie #idAdherent heure

ageMinimum commentaire

categorie

emprunt adherent participation

idEmprunt idAdherent idParticipation

#nomJeu nom ...

#idAdherent prenom ...

dateEmprunt dateNaissance

dateRendu adresse

FIGURE 2 – La base de données de la ludothèque

7. Proposer les clés étrangères de la table participation en précisant le nom des attributs auxquels elles font référence.

Le programme Python suivant permet de créer la liste de tous les jeux empruntés, sachant que, dans celle-ci, un jeu va apparaı̂tre autant
de fois qu’il a été emprunté.

1 import sqlite3
2
3 # Connexion à la base de données
4 connection = sqlite3.connect("ludotheque.db")
5 curseur = connection.cursor()
6
7 # Exécution de la requête
8 curseur.execute("SELECT nomJeu FROM emprunt")
9

10 # Récupération des résultats
11 jeux = curseur.fetchall()
12
13 liste = []
14 # Création de la liste des jeux empruntés
15 for jeu in jeux:
16 liste.append(jeu[0])
17
18 # Fermeture de la connexion
19 curseur.close()
20 connection.close()

8. Ecrire un script Python permettant de créer le dictionnaire dict_emprunts qui, à chaque jeu emprunté, associe le nombre de
fois où il a été emprunté.

6/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

On veut créer un podium des jeux les plus souvent empruntés. Comme il peut y avoir des égalités à la première, deuxième ou troisième
place, il peut y avoir plus de trois jeux sélectionnés sur le podium. Par exemple, si le dictionnaire des emprunts est :

dict_emprunts = {"Terraforming Mars": 25,
"Codenames": 22,
"Agricola": 18,
"Puerto Rico": 18,
"Caylus": 18,
"Dominion": 22,
"Dixit": 12}

il y aura sur le podium les jeux "Agricola", "Puerto Rico" et "Caylus" puis les jeux "Dominion" et "Codenames" et
enfin le jeu "Terraforming Mars".

Pour modéliser ce podium en Python, on va utiliser une liste de trois listes. Pour l’exemple précédent, cette liste sera :

[["Agricola", "Puerto Rico", "Caylus"], ["Dominion", "Codenames"],
["Terraforming Mars"]]

9. Proposer un script Python permettant de générer ce podium.

7/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

Exercice 3 (Programmation Python, sécurisation des communications et réseaux - 8 points)
Partie A : la méthode du masque jetable
Dans cette partie, on s’intéresse à une méthode de chiffrement dite du masque jetable. Voici ce que l’on peut lire sur le site Wikipédia :

Le chiffrement par la méthode du masque jetable consiste à combiner le message en clair avec une clé présentant les caractéristiques
très particulières suivantes :

� la clé doit être une suite de caractères au moins aussi longue que le message à chiffrer ;

� les caractères composant la clé doivent être choisis de façon totalement aléatoire ;

� chaque clé, ou ! masque ", ne doit être utilisée qu’une seule fois (d’où le nom de masque jetable).

Illustrons cette méthode par un exemple : on souhaite chiffrer le message HELLO avec la clé aléatoire, ou ! masque ", WMCKL. Pour
cela, on attribue un nombre à chaque lettre, par exemple le rang dans l’alphabet, de 0 à 25.

Tableau de correspondance

Lettre A B C D E F G H I J K L M

Rang 0 1 2 3 4 5 6 7 8 9 10 11 12

Tableau de correspondance

Lettre N O P Q R S T U V W X Y Z

Rang 13 14 15 16 17 18 19 20 21 22 23 24 25

Ensuite, on additionne la valeur du rang de chaque lettre du message avec la valeur du rang correspondante dans le masque.

Enfin, si le résultat est strictement supérieur à 25 on soustrait 26 (calcul dit ! modulo 26 ").

Ainsi, le chiffrement du message HELLO avec la clé WMCKL donne le message chiffré DQNVZ comme le montre l’illustration suivante.

FIGURE 1 – Exemple de chiffrement par la méthode du masque jetable

Source : d’après l’article Masque jetable de Wikipédia en français
(https://fr.wikipedia.org/wiki/Masque_jetable)

Dans cet exercice, on ne travaillera que sur des chaı̂nes de caractères écrites en majuscules non accentuées (les 26 caractères allant de
'A' à 'Z').

1. Chiffrer, par la méthode du masque jetable, le message LIBRE à l’aide de la clé EYQMT.

En Python, on crée une fois pour toute la variable alphabet qui sera accessible et utilisable dans toutes les fonctions. Celle-ci contient
la liste des 26 lettres de l’alphabet rangées dans l’ordre alphabétique :

alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']

2. Ecrire une fonction Python indice qui prend pour paramètre une liste L et un élément element et renvoie l’indice de element
dans la liste L.
On supposera que chaque élément de la liste L n’y apparaı̂t qu’une seule fois et que element est bien présent dans la liste L.
Par exemple, l’appel indice(alphabet, 'K') renvoie l’entier 10.

3. Ecrire une fonction Python lettres_vers_indices qui prend pour paramètre une chaı̂ne de caractères et renvoie, dans
l’ordre, la liste des indices de ces caractères dans l’alphabet.
Par exemple, l’appel lettres_vers_indices('HELLO') renvoie la liste d’entiers [7, 4, 11, 11, 14].

8/10

https://fr.wikipedia.org/wiki/Masque_jetable


Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

On dispose également d’une fonction indices_vers_lettres, qu’on ne demande pas d’écrire, permettant de convertir une liste
d’entiers, compris entre 0 et 25, en une chaı̂ne de caractères. Par exemple, l’appel indices_vers_lettres([3, 16, 13, 21, 25])
renvoie la chaı̂ne de caractères 'DQNVZ'.

Ci-après, on donne une fonction Python chiffrement incomplète, qui, à partir d’un message msg et d’une clé cle entrés en pa-
ramètres, renvoie la chaı̂ne de caractères représentant le message chiffré par la méthode du masque jetable.

1 def chiffrement(msg, cle):
2 assert len(cle) >= len(msg), 'impossible'
3 indices_msg = lettres_vers_indices(msg)
4 indices_cle = lettres_vers_indices(cle)
5 n = len(msg)
6 indices_msg_chiffre = []
7 for k in range(n):
8 ind = ...
9 if ind >= 26:

10 ind = ...
11 indices_msg_chiffre.append(ind)
12 msg_chiffre = indices_vers_lettres(...)
13 return msg_chiffre

4. Recopier et compléter les lignes 7 à 13 de la fonction chiffrement.

5. Indiquer, en justifiant, ce que l’on observe lors de l’appel chiffrement('RESEAU', 'GFTZ').

On s’intéresse maintenant au déchiffrement d’un message chiffré par la méthode du masque jetable. Par exemple, le déchiffrement du
message DQNVZ avec la clé WMCKL donne le message HELLO.

6. Déchiffrer le message GMEDH avec la clé FVEIT.

7. Expliquer comment procéder pour déchiffrer un message lorsqu’on connaı̂t la clé.

On souhaite maintenant écrire, en Python, une fonction dechiffrement qui permet de déchiffrer un message chiffré par la méthode
du masque jetable. Pour cela, on s’inspire de la fonction chiffrement dans laquelle les paramètres ainsi que les lignes 2 à 5 sont
inchangées. On décide cependant de remplacer, ligne 6, le nom de la variable indices_msg_chiffre par le nom plus explicite
indices_msg_dechiffre.

8. Adapter les lignes 6 à 13 de la fonction chiffrement pour obtenir la nouvelle fonction dechiffrement.

Partie B : sécurisation des communications
9. Expliquer la différence entre un algorithme de chiffrement symétrique et un algorithme de chiffrement asymétrique.

Alice souhaite envoyer un message à Bob par l’intermédiaire d’un réseau informatique en utilisant un algorithme de chiffrement
asymétrique. Pour cela, Bob envoie à Alice sa clé publique. Alice chiffre ensuite le message à l’aide de la clé publique de Bob qu’elle
vient de recevoir, puis elle envoie ce message chiffré à Bob.

10. Indiquer comment Bob peut déchiffrer le message que lui envoie Alice.

11. Expliquer comment une tierce personne pourrait se faire passer pour Alice sans que Bob ne s’en aperçoive.

12. Expliquer brièvement le fonctionnement du protocole HTTPS.

13. Expliquer pourquoi, pour sécuriser intégralement les communications sur Internet, on utilise le protocole HTTPS plutôt qu’un
chiffrement asymétrique.

Partie C : réseaux
Bob et Marc travaillent pour une petite compagnie d’assurances. Leurs postes de travail font partie d’un même réseau local géré par
l’administratrice système qui dispose du bloc d’adresses IPv4 192.168.110.0/24.

La notation /24 situé à la suite de l’adresse 192.168.110.0 signifie que le masque de sous-réseau du réseau de cette entreprise
est 255.255.255.0 : les trois premiers octets d’une adresse IP sur ce réseau permettent donc d’identifier la partie réseau de l’adresse,
alors que le dernier octet permet d’identifier la partie hôte et est propre à chaque machine sur le réseau. Ce sous-réseau permet donc
d’attribuer 256 adresses IPv4 différentes.

L’administratrice choisit alors d’attribuer, en représentation décimale, l’identifiant 115 pour la partie hôte du poste de travail de Bob et
l’identifiant 153 pour celui de Marc.

9/10



Bac NSI Métropole - juin 2025 - sujet 2 Session 2025

Depuis son poste de travail, Marc souhaite tester la communication avec celui de Bob. Pour cela, il exécute la commande ping
192.168.100.115 et obtient l’affichage suivant :

--- 192.168.100.115 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 3060ms

14. Expliquer l’affichage obtenu et corriger l’erreur de Marc.

Afin d’améliorer les performances et la sécurité du réseau de l’entreprise, l’administratrice système décide de séparer le réseau local
en plusieurs sous-réseaux et de les relier entre eux par des routeurs. Pour cela, elle modifie le masque de sous-réseau qui devient
11111111.11111111.11111111.11100000, donné ici en représentation binaire.

15. Donner la représentation décimale de ce masque de sous-réseau.

Pour obtenir l’adresse IPv4 du sous-réseau auquel appartient une machine, il suffit d’appliquer l’opérateur binaire ET, bit à bit, entre le
masque de sous-réseau et l’adresse IPv4 de la machine.

Par exemple, prenons le dernier octet de l’adresse IPv4 de Bob dont la représentation binaire est 01110011 : en appliquant bit à
bit l’opérateur binaire ET entre cet octet et l’octet correspondant dans le masque, on obtient le dernier octet de l’adresse du sous-réseau,
soit 01100000.

1 1 1 0 0 0 0 0 (224)
ET 0 1 1 1 0 0 1 1 (115)
------------------

0 1 1 0 0 0 0 0 (96)

Le poste de travail de Bob est donc sur le sous-réseau d’adresse 192.168.110.96.

16. Indiquer le nombre total d’adresses IPv4 pouvant être attribuées sur le sous-réseau d’adresse 192.168.110.96 sur lequel se
trouve Bob.

L’administratrice système attribue maintenant l’adresse IPv4 192.168.110.134 au poste de travail de Zoé, nouvelle employée de la
compagnie d’assurances.

17. Donner la représentation binaire du nombre 134.

Depuis son poste de travail, Zoé exécute les deux commandes suivantes :

� commande n�1 : ping 192.168.110.115 ;

� commande n�2 : ping 192.168.110.153.

18. Indiquer, en justifiant, laquelle de ces deux commandes a produit l’affichage suivant :

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

10/10


