Métropole - juin 2025 - sujet 2

Exercice 1 (Arbres binaires et programmation Python - 6 points)
Le codage de Shannon-Fano est un systeme de codage utilisé pour la compression sans pertes de données. Il a été mis au point par
Robert Fano d’apres une idée de Claude Shannon.

Partie A
Dans cette partie, on va étudier I’utilisation des arbres de codage.

Un arbre de codage est un arbre binaire ou chaque feuille contient un symbole du texte que 1’on souhaite coder. Le code binaire
d’un symbole s’obtient alors en concaténant les O et les 1 sur les branches qui meénent de la racine a la feuille contenant ce symbole.
Par exemple, pour I’arbre de codage donné en Figure 1, le symbole c est codé par le mot binaire 1101, tandis que d est codé par le
mot binaire 11000. Les codes binaires des symboles ne sont donc pas tous de la méme taille. Pour décoder un mot binaire, il suffit
de descendre dans I’arbre, depuis la racine, selon les O et les 1 qu’on lit jusqu’a trouver une feuille (et donc un symbole), puis de
recommencer avec la suite du mot binaire pour décoder les symboles suivants.

1/ \O 1/ \o 1/ \O
OXONON NORORCXO
1 0

1 0

FIGURE 1 — Exemple d’arbre de codage

1. Ecrire le mot binaire qui sera utilisé pour encoder le caractére espace, représenté par le symbole _ dans I’arbre.
2. Déterminer le texte codé par le mot binaire 0001110101111110011001.
3. Citer le type de parcours de 1’arbre qui permettrait d’obtenir les symboles classés par taille d’encodage croissante.

Partie B
Dans cette partie, on va utiliser le codage de Shannon-Fano pour encoder le texte : je pense, donc je suis

Dans la méthode de Shannon-Fano, 1’arbre de codage est calculé pour un texte donné par I’algorithme suivant :

* Etape 1 : classer les symboles du texte par nombre d’occurrences croissant;

* Etape 2 : en gardant le classement obtenu, séparer les symboles en deux sous-groupes de sorte que les totaux des nombres
d’occurrences soient les plus proches possibles dans les deux sous-groupes ;

* Etape 3 : placer tous les symboles du premier groupe dans le fils gauche (coté étiqueté par 1), et ceux du second groupe dans le
fils droit (c6té étiqueté par 0);

* Etape 4 : recommencer récursivement pour chacun des sous-groupes jusqu’a ce qu’ils n’aient plus qu’un seul symbole; on a alors
une feuille étiquetée par ce symbole.

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

Apres avoir classé les symboles par nombre d’occurrences croissant (étape 1), on obtient le tableau suivant :

symbole ijlu|lclol|ld|, |p|n]|J]|s e

nombred’occurrences | 1 | 1 |1 [1|1 |1 |12 2|3 |4]|4

4. Justifier par le calcul que I’étape 2 mene a la situation illustrée par la Figure 2.

ilufjclo|d|, |p|ln|J|s|_|¢e

1|11 11]1]1 21213144

/ \
ijulclo|dl|, |pP|n]|Jj s|_1|e
111|111} 12]|2 31414

FIGURE 2 — Le résultat de 1’étape 2

En appliquant I’algorithme de Shannon-Fano, on peut obtenir I’arbre de la Figure 3.

ijlu|lcl]o]|d _
111111 4
A /N /s
B OGRS
111 1111 101 212
1 0 1\0 1 0 1 0
Olss

101

1/0

FIGURE 3 — Arbre de codage obtenu par I’algorithme de Shannon-Fano

—_
—_ |~
— |T
N B
o | U
w 0

i|u

2/10

Bac NSI Meétropole - juin 2025 - sujet 2

Session 2025

On rappelle qu’un arbre réduit a un seul nceud, ¢’est-a-dire réduit a une feuille, est de hauteur 0.

5. Donner la hauteur de 1’arbre de la Figure 3 et préciser dans le contexte de 1’exercice ce qu’elle représente. On rappelle que dans
le code ASCII, chaque symbole est codé sur un octet. 6. Justifier, en comparant le codage ASCII et le codage de Shannon-Fano,

que ce second codage permet d’utiliser environ deux fois moins d’octets pour le texte : je pense,

donc je suis

6. Dessiner, en vous inspirant de I’arbre de la Figure 1, un arbre de codage qui permettrait d’encoder le mot « chiffrer » en

utilisant 1’algorithme de Shannon-Fano.

Partie C

Dans cette partie, on souhaite écrire une fonction Python qui donnera le mot binaire obtenu pour coder un texte avec 1’algorithme de

Shannon-Fano. On commence par la fonction creer_dico_occ:

def creer_dico_occ (texte) :

"""renvolie un dictionnalire dont les clés sont

symboles de texte et les valeurs associées leur

nombre d'occurences dans texte"""
{1

for symbole in texte:
if symbole in dico:

dico

les

NoRENCL RN e LY, TN N USI (S

—_
S

11

dico[symbole]
else:
dico[symbole]
return dico

7. Recopier et compléter les lignes 8 et 10 du code de la fonction creer_dico_occ.

On dispose d’une fonction creer_tab_trie qui prend en parametre un dictionnaire construit avec la fonction creer_dico_occ

et qui renvoie une liste de tuples classés dans 1’ordre croissant d’occurrences des symboles. Par exemple :

>>> texte 'je pense, donc je suis'

>>> dico = creer_dico_occ (texte)

>>> creer_tab_trie(dico)

(¢riv, 1), ('uv', 1), ('c¢c', 1), ('o', 1), ('4a', 1), (',', 1),
('n', 2), ("3', 2), ('s", 3), (" ', 4), ('e', 4)]

8. Ecrire une fonction somme_occ qui prend en parametres un tableau tab de tuples (symbole,

nb_occ) et qui renvoie la

somme des nombres d’occurrences des symboles du tableau. Les tuples utilisés sont de méme structure que 1’élément renvoyé

dans I’exemple précédent.

On suppose pour la suite qu’on dispose d’une fonction separe qui sépare un tableau trié en deux sous-tableaux de maniere a ce que

les sommes de ces derniers soient les plus proches possible :

1 |def separe(tab):

2 moitie = somme_occ (tab) // 2

3 somme = 0

4 i=20

5 while moitie > somme:

6 somme = somme + tab[i] [1]

7 i =1+ 1

8 tabl [tab[k] for k in range (0, 1i)]

9 tab2 = [tablk] for k in range (i, len(tab))]
10 return tabl, tab2

3/10

Bac NSI

Métropole - juin 2025 - sujet 2

Session 2025

9. Recopier et compléter les lignes 9 et 11 du code de la fonction récursive shannon qui prend en parametres un caractere symbole
et un tableau trié tab et qui renvoie 1’écriture binaire associée a symbole dans le tableau tab.

1 |def shannon (symbole, tab):

2 """renvoie 1'écriture binaire associée a symbole
3 dans le tableau trié tab"""

4 if len(tab) == 1:

5 return ""

6 else:

7 tl, t2 = separe(tab)

8 if symbole in [elt[0] for elt in tl]:
9 return "1" +

10 else:

11 return "0" +

10. Décrire ce qui garantit la terminaison de la fonction récursive shannon.

11. Ecrire une fonction encode_shannon qui prend en parameétre un texte de type str et renvoie un mot binaire de type str obtenu
apres encodage par 1’algorithme de Shannon-Fano. On pourra utiliser les fonctions vues précédemment qui sont recensées ci-

apres.

creer_dico_occ (texte)
renvoie un dictionnaire dont les clés sont les symboles
du texte et les valeurs associées leur nombre d’occurrences

creer_tab_trie(dico)
renvoie la liste crée a partir d’un dictionnaire de
couples (symbole, nb_occ)

separe (tab)
renvoie le tuple composé des 2 sous-tableaux triés avec
des sommes d’occurences proches

shannon (symbole, tab)
renvoie 1’écriture binaire associée au symbole dans le
tableau trié tab

4/10

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

Exercice 2 (Bases de données, langage SQL et programmation python - 6 points)

Une ludothéque municipale a décidé de moderniser sa gestion en créant une base de données informatique. Cette base de données
permettra de suivre les jeux disponibles, les emprunts effectués par les adhérents, ainsi que les avis laissés sur les différents jeux. Pour
commencer, quatre tables principales ont été identifiées : jeu, adherent, emprunt et avis. Ces tables et leurs relations vont
permettre de stocker toutes les informations essentielles au bon fonctionnement de la ludotheque. On va considérer que la ludotheque
n’a qu’un exemplaire de chaque jeu (deux jeux de la ludotheque ne peuvent donc pas avoir le méme nom).

jeu avis
> nomJeu idAvis
editeur #nomJeu
anneeSortie #idAdherent
ageMinimum commentaire
categorie
emprunt adherent
idEmprunt idAdherent
— #nomJeu nom
—1 #idAdherent prenom
dateEmprunt dateNaissance
dateRendu adresse

FIGURE 1 — La base de données de la ludotheque

Dans la figure ci-dessus, les clés primaires de chacune des tables sont soulignées et les clés étrangeres sont précédées du symbole #.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :
* construire des requétes d’interrogation a 1’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR) et JOIN
ON;
* construire des requétes d’insertion et de mise a jour a I’aide de UPDATE, INSERT et DELETE;
* affiner les recherches a I’aide de DISTINCT et ORDER BY;
* réaliser des agrégations a I’aide de COUNT.

Par exemple, I’instruction SQL :

SELECT COUNT (nomJeu) FROM Jjeu;

donne le nombre de jeux présents dans la table jeu.
1. Expliquer pourquoi on ne peut pas prendre 1’attribut nom comme clé primaire pour la relation adherent.

2. Décrire ce que donne la requéte SQL suivante :

SELECT nomJeu, editeur FROM jeu ORDER BY nomJeu;

Lorsque qu’un jeu est emprunté et n’a pas encore été rendu, la valeur de I’attribut dateRendu de la table emprunt est a NULL.
3. Ecrire une requéte permettant de connaitre le nom de tous les jeux qui sont en cours d’emprunt.
4. Ecrire une requéte SQL pour afficher le nom et le prénom de tous les adhérents qui ont emprunté le jeu Catan.

5. Claire VOYANT, adhérente de longue date a cette ludotheque, a emprunté le jeu Catan et I’a rendu le 3 juin 2025. Lors de I’em-
prunt, la valeur de idEmprunt était 1538. Ecrire une requéte SQL qui a permis de mettre a jour la base de données afin qu’elle
prenne en compte que ce jeu a été rendu. Toutes les dates de la base de données sont écrites sous le format ' AAAA-MM-JJ"'.

6. Ecrire une requéte SQL qui permet de trouver le nom et la catégorie de tous les jeux de la ludothéque sortis a partir de 2010 et
dont I’age minimum est strictement inférieur a 10 ans.

5/10

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

La Iudotheque décide d’organiser des événements. Pour cela, elle ajoute une relation evenement a sa base de données. En outre, pour
chaque événement, elle souhaite garder en mémoire une trace des adhérents qui y ont participé. A cette fin, elle compléte sa base avec

une relation participation.

jeu avis evenement

—| nomJeu idAvis nom

editeur #nomJeu dateEvenement

anneeSortie #idAdherent heure

ageMinimum commentaire

categorie

emprunt adherent participation

idEmprunt idAdherent idParticipation
— #nomJeu nom

#idAdherent prenom

dateEmprunt dateNaissance

dateRendu adresse

FIGURE 2 — La base de données de la ludotheque

7. Proposer les clés étrangeres de la table participation en précisant le nom des attributs auxquels elles font référence.

Le programme Python suivant permet de créer la liste de tous les jeux empruntés, sachant que, dans celle-ci, un jeu va apparaitre autant
de fois qu’il a été emprunté.

1 |import sglite3

2

3 |# Connexion a la base de données

4 |connection = sglite3.connect ("ludotheque.db")
5 |curseur = connection.cursor ()

6

7 | # Exécution de la requéte

8 |curseur.execute ("SELECT nomJeu FROM emprunt")
9

10 | # Récupération des résultats

11 | jeux = curseur.fetchall()

12

13 |1liste = []

14 | # Création de la liste des jeux empruntés

15 | for jeu in jeux:

16 liste.append(jeul0])

17

18 | # Fermeture de la connexion

19 |curseur.close ()

20 |connection.close ()

8. Ecrire un script Python permettant de créer le dictionnaire dict_emprunts qui, a chaque jeu emprunté, associe le nombre de
fois ou il a été emprunté.

6/10

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

On veut créer un podium des jeux les plus souvent empruntés. Comme il peut y avoir des égalités a la premiere, deuxieme ou troisieme
place, il peut y avoir plus de trois jeux sélectionnés sur le podium. Par exemple, si le dictionnaire des emprunts est :

dict_emprunts = {"Terraforming Mars": 25,
"Codenames": 22,
"Agricola": 18,
"Puerto Rico": 18,
"Caylus": 18,
"Dominion": 22,
"Dixit": 12}

il y aura sur le podium les jeux "Agricola", "Puerto Rico" et "Caylus" puis les jeux "Dominion" et "Codenames" et
enfin le jeu "Terraforming Mars".

Pour modéliser ce podium en Python, on va utiliser une liste de trois listes. Pour I’exemple précédent, cette liste sera :

[["Agricola", "Puerto Rico", "Caylus"], ["Dominion", "Codenames"],
["Terraforming Mars"]]

9. Proposer un script Python permettant de générer ce podium.

7/10

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

Exercice 3 (Programmation Python, sécurisation des communications et réseaux - 8 points)
Partie A : la méthode du masque jetable
Dans cette partie, on s’intéresse a une méthode de chiffrement dite du masque jetable. Voici ce que I’on peut lire sur le site Wikipédia :

Le chiffrement par la méthode du masque jetable consiste a combiner le message en clair avec une clé présentant les caractéristiques
tres particuliéres suivantes :

* la clé doit étre une suite de caracteres au moins aussi longue que le message a chiffrer;
* les caracteres composant la clé doivent étre choisis de facon totalement aléatoire ;
* chaque clé, ou « masque », ne doit étre utilisée qu’une seule fois (d’ou le nom de masque jetable).

Illustrons cette méthode par un exemple : on souhaite chiffrer le message HELLO avec la clé aléatoire, ou « masque », WMCKL. Pour
cela, on attribue un nombre a chaque lettre, par exemple le rang dans ’alphabet, de 0 a 25.

Tableau de correspondance
Lettre A B C D E F G H I J K L M
Rang 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
Tableau de correspondance
Lettre | N 0 P Q R S T U \Y W X Y Z
Rang | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25

Ensuite, on additionne la valeur du rang de chaque lettre du message avec la valeur du rang correspondante dans le masque.
Enfin, si le résultat est strictement supérieur a 25 on soustrait 26 (calcul dit « modulo 26 »).

Ainsi, le chiffrement du message HELLO avec la clé WMCKL donne le message chiffré DONVZ comme le montre [’illustration suivante.

7 (H) 4 (E) 11 (L) 11 (L) 14 (0) message
+22 (W) 12 (M) 2 (C) 18 (K) 11 (L) masque
= 29 16 13 21 25 masque + message
= 3 (D) 16 (Q) 13 (N) 21 (V) 25 (Z) masque + message modulo 26

FIGURE 1 — Exemple de chiffrement par la méthode du masque jetable

Source : d’apres Iarticle Masque jetable de Wikipédia en frangais
(https://fr.wikipedia.org/wiki/Masque_jetable)

Dans cet exercice, on ne travaillera que sur des chaines de caracteres écrites en majuscules non accentuées (les 26 caracteres allant de

N

'A' a v 7 l)'
1. Chiffrer, par la méthode du masque jetable, le message LIBRE a I’aide de la clé EYQMT.

En Python, on crée une fois pour toute la variable alphabet qui sera accessible et utilisable dans toutes les fonctions. Celle-ci contient
la liste des 26 lettres de I’alphabet rangées dans 1’ordre alphabétique :

alphabet ['a',

lNl,

IBI,
vov,

lcl,
'P',

IDI,
‘Q',

IEI,
IRII

v v
B,

v v
Sty

IGI,
ITI,

'H',
'U',

III,
vvll

T
Jhy

LRVl
we,

'K',
'X',

'L‘I
'Y‘I

IMI,
vzv]

2. Ecrire une fonction Python indice qui prend pour parametre une liste L et un élément e Lement et renvoie I’indice de e lement
dans la liste L.
On supposera que chaque élément de la liste L n’y apparait qu’une seule fois et que e lement est bien présent dans la liste L.
Par exemple, I’appel indice (alphabet, 'K') renvoie l’entier 10.

3. Ecrire une fonction Python lettres_vers_indices qui prend pour parametre une chaine de caracteres et renvoie, dans
I’ordre, la liste des indices de ces caracteéres dans 1’alphabet.

Par exemple, I’appel lettres_vers_indices ('HELLO') renvoie la liste d’entiers [7, 4, 11, 11, 14].

8/10

https://fr.wikipedia.org/wiki/Masque_jetable

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

On dispose également d’une fonction indices_vers_lettres, qu’on ne demande pas d’écrire, permettant de convertir une liste
d’entiers, compris entre 0 et 25, en une chaine de caracteres. Par exemple, ’appel indices_vers_lettres ([3, 16, 13, 21, 25])
renvoie la chaine de caractéres 'DONVZ'.

Ci-apres, on donne une fonction Python chiffrement incompléte, qui, a partir d’'un message msg et d’une clé cle entrés en pa-
rametres, renvoie la chaine de caracteres représentant le message chiffré par la méthode du masque jetable.

1 |def chiffrement (msg, cle):

2 assert len(cle) >= len(msg), 'impossible'
3 indices_msg = lettres_vers_indices (msqg)
4 indices_cle = lettres_vers_indices(cle)
5 n = len(msqg)

6 indices_msg_chiffre = []

7 for k in range(n):

8 ind = .

9 if ind >= 26:

10 ind =

11 indices_msg_chiffre.append (ind)

12 msg_chiffre = indices_vers_lettres(...)
13 return msg_chiffre

4. Recopier et compléter les lignes 7 & 13 de la fonction chiffrement.

5. Indiquer, en justifiant, ce que 1’on observe lors de I’appel chiffrement ('RESEAU', 'GFTZ').
On s’intéresse maintenant au déchiffrement d’un message chiffré par la méthode du masque jetable. Par exemple, le déchiffrement du
message DONVZ avec la cl€é WMCKL donne le message HELLO.

6. Déchiffrer le message GMEDH avec la clé FVEIT.

7. Expliquer comment procéder pour déchiffrer un message lorsqu’on connait la clé.

On souhaite maintenant écrire, en Python, une fonction dechiffrement qui permet de déchiffrer un message chiffré par la méthode
du masque jetable. Pour cela, on s’inspire de la fonction chiffrement dans laquelle les parametres ainsi que les lignes 2 a 5 sont
inchangées. On décide cependant de remplacer, ligne 6, le nom de la variable indices_msg_chiffre par le nom plus explicite
indices_msg_dechiffre.

8. Adapter les lignes 6 a 13 de la fonction chiffrement pour obtenir la nouvelle fonction dechiffrement.

Partie B : sécurisation des communications
9. Expliquer la différence entre un algorithme de chiffrement symétrique et un algorithme de chiffrement asymétrique.

Alice souhaite envoyer un message a Bob par I'intermédiaire d’un réseau informatique en utilisant un algorithme de chiffrement
asymétrique. Pour cela, Bob envoie a Alice sa clé publique. Alice chiffre ensuite le message a 1’aide de la clé publique de Bob qu’elle
vient de recevoir, puis elle envoie ce message chiffré a Bob.

10. Indiquer comment Bob peut déchiffrer le message que lui envoie Alice.
11. Expliquer comment une tierce personne pourrait se faire passer pour Alice sans que Bob ne s’en apercoive.
12. Expliquer brievement le fonctionnement du protocole HTTPS.

13. Expliquer pourquoi, pour sécuriser intégralement les communications sur Internet, on utilise le protocole HTTPS plutot qu’un
chiffrement asymétrique.

Partie C : réseaux
Bob et Marc travaillent pour une petite compagnie d’assurances. Leurs postes de travail font partie d’un méme réseau local géré par
I’administratrice systeme qui dispose du bloc d’adresses IPv4 192.168.110.0/24.

La notation /24 situé a la suite de I’adresse 192.168.110. 0 signifie que le masque de sous-réseau du réseau de cette entreprise
est 255.255.255.0 : les trois premiers octets d’une adresse IP sur ce réseau permettent donc d’identifier la partie réseau de I’adresse,
alors que le dernier octet permet d’identifier la partie hote et est propre a chaque machine sur le réseau. Ce sous-réseau permet donc
d’attribuer 256 adresses IPv4 différentes.

L’administratrice choisit alors d’attribuer, en représentation décimale, 1’identifiant 115 pour la partie hote du poste de travail de Bob et
I’identifiant 153 pour celui de Marc.

9/10

Bac NSI Meétropole - juin 2025 - sujet 2 Session 2025

Depuis son poste de travail, Marc souhaite tester la communication avec celui de Bob. Pour cela, il exécute la commande ping
192.168.100.115 et obtient I’affichage suivant :

-—— 192.168.100.115 ping statistics —-——
4 packets transmitted, 0 received, 100% packet loss, time 3060ms

14. Expliquer I’affichage obtenu et corriger I’erreur de Marc.

Afin d’améliorer les performances et la sécurité du réseau de I’entreprise, I’administratrice systeéme décide de séparer le réseau local
en plusieurs sous-réseaux et de les relier entre eux par des routeurs. Pour cela, elle modifie le masque de sous-réseau qui devient
11111111.11111111.11111111.11100000, donné ici en représentation binaire.

15. Donner la représentation décimale de ce masque de sous-réseau.

Pour obtenir I’adresse IPv4 du sous-réseau auquel appartient une machine, il suffit d’appliquer I’opérateur binaire ET, bit a bit, entre le
masque de sous-réseau et I’adresse IPv4 de la machine.

Par exemple, prenons le dernier octet de I’adresse IPv4 de Bob dont la représentation binaire est 01110011 : en appliquant bit a
bit I’opérateur binaire ET entre cet octet et I’octet correspondant dans le masque, on obtient le dernier octet de I’adresse du sous-réseau,
s0it 01100000.

01100000 (96)

Le poste de travail de Bob est donc sur le sous-réseau d’adresse 192.168.110. 96.

16. Indiquer le nombre total d’adresses IPv4 pouvant étre attribuées sur le sous-réseau d’adresse 192.168.110. 96 sur lequel se
trouve Bob.

L’administratrice systeme attribue maintenant 1’adresse IPv4 192.168.110.134 au poste de travail de Zoé, nouvelle employée de la
compagnie d’assurances.

17. Donner la représentation binaire du nombre 134.
Depuis son poste de travail, Zoé exécute les deux commandes suivantes :

* commande n°l : ping 192.168.110.115;

* commande n°2 : ping 192.168.110.153.

18. Indiquer, en justifiant, laquelle de ces deux commandes a produit I’affichage suivant :

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

10/10

